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Abstract The mechanisms driving crustal deformation and uplift of orogenic plateaus are fundamental to
continental tectonics. Large-scale crustal flow has been hypothesized to occur in eastern Tibet, but it remains
controversial due to a lack of geologic evidence. Geochemical and isotopic data from Cenozoic igneous rocks in
the eastern Tibet-Gongga-Zheduo intrusive massif, provide a way to test this model. Modeling results suggest
that Cenozoic magmas originated at depths of ~30—-40 km, the depth that crustal flow has been postulated to
occur at. Detailed isotopic analyses indicate that the igneous rocks are derived from partial melting of the

local Songpan-Ganzi crust, arguing against a long-distance crustal flow. Episodic magmatism during the
Cenozoic showing a repeated shifting of magmatic sources can be correlated with crustal uplift. The continued
indentation of the Indian Block and upwelling of the asthenosphere contribute to the crustal deformation,
magmatism, and uplift.

Plain Language Summary How the Tibetan Plateau grows outward and deformed remains
controversial. A large-scale crustal flow model has been favored for the expansion of the southeast Tibetan
Plateau, arguing that crustal materials could flow hundreds of km resulting in crustal thickening and uplift.
Detailed geochemical and isotopic investigations on the largest intrusion (Gongga-Zheduo) in the eastern
margin of the Tibetan Plateau show that their magmatic source is local crustal rocks of the Songpan-Ganzi
terrane without the input of crustal materials from central Tibet. Thermodynamic and trace element modeling
results show that the Cenozoic magma is derived from ~30 to 40 km depth, similar to the depth of postulated
crustal flow. The results are inconsistent with the large-scale eastward crustal flow model. A repeated shifting
of magmatic sources during the Cenozoic is correlated with crustal uplift. Mantle-crust interaction plays a
primary role in the formation of magmatism and modifying crustal rheology. The continued collision between
the Indian and Asian blocks and upwelling of the asthenosphere contribute to the crustal deformation and uplift.

1. Introduction

The Tibetan Plateau was created by the India-Asia continental collision during the Cenozoic and is a natural
laboratory to test models of continental tectonics. The mechanisms of crustal deformation, uplift, and outward
expansion of the plateau are among the most controversial and unresolved aspects of the collision. The Asian
block has experienced relatively diffuse deformation, located far away from the Indo-Asian suture zone (England
& Houseman, 1986; England & Molnar, 1997). Some researchers have ascribed crustal thickening and outward
expansion of the plateau as a result of escape tectonics along major strike-slip faults (Molnar & Tapponnier, 1975;
Tapponnier et al., 2001). Others have proposed that the indentation of India is driving large-scale lower crus-
tal flow and redistributing mass, to cause crustal thickening and outward expansion of the plateau (Clark &
Royden, 2000; Royden et al., 1997).

The large-scale (>1,000 km) crustal flow model can explain why there is high topography in the absence of
significant crustal shortening and a low topographic gradient along the eastern margin of the Tibetan Plateau
(EMTP; Figure 1; Clark & Royden, 2000; Royden et al., 1997; Schoenbohm et al., 2006). The central Tibetan
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Figure 1. Maps of the Tibetan Plateau and Gongga-Zheduo granitic massif and conceptual models for crustal thickening and tectonic uplift in eastern Tibet. (a)
Distribution of geophysical anomalies and Cenozoic magmatic rocks in the Tibetan Plateau. Vs perturbation at 30 km depth are from Y. Yang et al. (2012). Pn
low-velocity anomalies at the uppermost mantle are from Zhou and Lei (2016). Light-yellow arrows mark the inferred location of hypothesized flow channels

(Bai et al., 2010). The distribution of magmatic rocks is from Chung et al. (2005) and Hou et al. (2006). Numbers represent suture zones and faults: 1-Eastern
Kunlun-Animaqging suture zone; 2-Jinshajiang suture zone; 3-Longmuco-Shuanghu suture zone; 4-Bangong-Nujiang suture zone; 5-Indus-Yarlung Zangbo suture zone;
6-Ganzi-Litang suture zone; 7-Kunlun fault; 8-Longmenshan thrust fault; 9-Xianshuihe-Xiaojiang fault; 10-Ailaoshan-Honghe fault; 11-Sagaing fault. (b) Large-scale
crustal flow model with crustal thickening caused by channelized exotic crustal materials (after Clark, Bush, et al., 2005; Clark & Royden, 2000). (c) Soft crust

model with crustal thickening caused by local crustal diffusive deformation. (d) A simplified geological map of the Gongga-Zheduo granitic massif. Yellow circles
denote sample locations. The ages in red are data from this study. The ages in black are from previous studies (Lai & Zhao, 2018; H. Li & Zhang, 2013; H. Li, Zhang,
et al., 2015; Searle et al., 2016).

Plateau, with high elevations and thickened crust, provided a lateral pressure gradient required for the crustal flow
(Clark & Royden, 2000; Royden et al., 1997). Furthermore, low-velocity and high-conductivity zones with high
Poisson's ratios have been reported in the mid-lower crust of the EMTP and Northern Qiangtang terrane (NQT),
interpreted to be mobile mid-lower crust (Figure 1; Bai et al., 2010; Bao et al., 2015; Kong et al., 2016; Q. Y. Liu
et al., 2014; C.-Y. Wang et al., 2010). Therefore, a crustal flow “channel” was proposed to extend from the NQT
to the EMTP, at a depth of ~25-40 km (Figure 1; Bai et al., 2010; Bao et al., 2015; Clark, Bush, et al., 2005;
Clark & Royden, 2000).

Crustal flow is a solid-state process (e.g., mylonitic shear zone) that initiates under appropriate stress condi-
tions and when temperatures exceed 400°C-500°C (e.g., Kruse et al., 1991; MacCready et al., 1997; McKenzie
et al., 2000). For a large-scale crustal flow (>1,000 km), higher crustal temperatures are required (i.e., >700°C;
Kruse et al., 1991). The Tibetan plateau has high modern geothermal gradients (>25°C/km), which are thought
to be related to limited erosion and high radiogenic heat production (Whittington et al., 2009). The high heat
flow provides a basis for the large-scale crustal flow model and also explains magmatism which involves partial
melting of the lower middle crust (H. Li & Zhang, 2013; Searle et al., 2016).

Here, we present a test for the large-scale crustal flow hypothesis in the EMPT using the isotopic signature of
magmatic rocks. If large-scale crustal flow from the NQT occurs, distinct isotopic signatures of that terrane
are expected in crustal-derived or crustally contaminated melts. The Gongga-Zheduo granitic massif, the larg-
est intrusion in the EMTP, has a complex magmatic history from the Mesozoic (~220-170 Ma) to Cenozoic
(~40-5 Ma) (Figure 1; Lai & Zhao, 2018; H. Li & Zhang, 2013; H. Li, Zhang, Zhang, Dong, & Zhu, 2015; Roger
et al., 1995; Searle et al., 2016; Y.-Z. Zhang et al., 2017). It provides an opportunity to test the large-scale crustal
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flow model. Previous studies have tried to use such a method to trace crustal flow in the southern Tibet (e.g., King
et al., 2007), but the conclusion was debated because the lower crust of Himalaya has similar isotopic composi-
tions to the Lhasa terrane (e.g., L. Zeng et al., 2011). The Sr-Nd-Hf-O isotopic compositions of the local crust in
the EMTP compared to the NQT show clear differences and crustal-derived magmas from the EMTP and NQT
can be distinguished (Figure S1 in Supporting Information S1; de Sigoyer et al., 2014; S. Li et al., 2021; Long
et al., 2015; Peng et al., 2015; Song et al., 2021; Q. Wang et al., 2016; Y.-C. Zeng et al., 2020; Zhao et al., 2018).

2. Geology of the Gongga-Zheduo Granitic Massif

The Gongga-Zheduo granitic massif (Figure 1) intruded into Triassic turbidites in the Songpan-Ganzi terrane
and outcrop along the west side of NNW-SSE trending Xianshuihe Fault. The eastern margin of the massif is an
Oligocene mylonite-migmatite zone, intruded by Pliocene dikes (H. Li & Zhang, 2013; Y.-Z. Zhang et al., 2017).

The main part of Gongga-Zheduo massif is subdivided into two units, the Gongga granites in the south and the
Zheduo granites in the north (Figure 1). The Gongga granites are mainly composed of Triassic quartz diorite
to monzogranite and minor Miocene syenogranite (H. Li, Zhang, et al., 2015). The Zheduo granites consist of
mainly Miocene syenogranite with some Jurassic syenogranite (Lai & Zhao, 2018; H. Li, Zhang, et al., 2015;
Roger et al., 1995), and newly discovered fine-grained monzogranite and leucogranitic dike (Figures S2—-S4 in
Supporting Information S1). The Cenozoic magmatism here reflected a complex deformation history related
to the Xianshuihe Fault: compression during the Eocene, transition from compression to strike-slip during the
Miocene, and large-scale shearing during the Pliocene (e.g., Y. Chen et al., 2020; Y.-Z. Zhang et al., 2017). See
Supporting Information for detailed geologic descriptions.

3. Methods

Detailed analytical and modeling methods are presented in the Supporting Information.

3.1. Analytical Methods

Whole-rock major and trace elements were analyzed at the Wuhan Sample Solution Analytical Technology Co.,
Ltd., Wuhan, China. Zircon U-Pb dating and in situ Sr-Nd-Hf-O isotopic analyses were performed at the Institute
of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.

3.2. Thermodynamic Modeling

Thermodynamic modeling was performed using a Gibbs free energy minimization approach using the software
Perple_X (version 6.9.1) to constrain melting temperatures and pressures. The average composition of Neoprote-
rozoic mafic rocks from the western margin of the Yangtze Craton and Paleozoic to Mesozoic metasedimentary
rocks from the Songpan-Ganzi terrane were selected as representative of the local EMTP source compositions.
A system of Na,0-CaO-K,0-FeO-MgO-Al,0,-SiO,-H,0-TiO,-O, (NCKFMASHTO) and the data set of
hp633ver were used for the thermodynamic modeling based on the mineral assemblages and bulk rock composi-
tions, assuming Fe3*/(Fe** + Fe?*) value as 0.2 for basaltic rock and 0.3 for metasedimentary rock, respectively
(Forshaw & Pattison, 2021; Pourteau et al., 2020). The water contents are estimated based on the average value of
loss-on-ignition. The equilibrium mineral assemblages and melt compositions are exported at discrete P-T points
for every 10°C and 0.1 GPa using a Perple_X-based program Rcrust (Mayne et al., 2016). The uncertainty of P-T'
estimates are +1 kbar and +50°C at the 2-sigma level (Palin et al., 2016).

4. Results and Discussion
4.1. Geochronology of the Gongga-Zheduo Granitic Massif

Our zircon U-Pb dating results indicate that the Gongga-Zheduo granitoid rocks were emplaced from 214 to
4 Ma (Figures S5-S6 in Supporting Information S1, Table S1 in Supporting Information S1), similar to previ-
ously published data. There are five main magmatic episodes in the EMTP, which are 215-200 Ma (Gongga
monzogranite and leucogranite), 173—172 Ma (Zheduo porphyritic to coarse-grained syenogranite), ~50-30 Ma
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(Zheduo fine-grained monzogranite, mylonitized granite and related leucogranite), ~20—10 Ma (Gongga-Zheduo
coarse to fine-grained syenogranite), and ~5-3 Ma (Zheduo leucogranite; H. Li & Zhang, 2013; H. Li, Zhang,
et al., 2015; Searle et al., 2016; Y.-Z. Zhang et al., 2017).

4.2. Petrogenesis of the Gongga-Zheduo Granitic Massif

Whole-rock geochemistry data and isotopic compositions are listed in Table S2-S5 in Supporting Informa-
tion S1. All samples are high in SiO, (67.6-76.0 wt.%) and most are peraluminous (A/CNK = 0.97-1.11; molar
AL0,/(CaO + Na,O + K,0)) (Figure S7 in Supporting Information S1) and can be divided into two subgroups
according to their K,0/Na,O ratio (Figure 2). Subgroup 1, including Gongga Triassic leucogranite, Zheduo
Jurassic syenogranite, and Gongga-Zheduo Miocene syenogranite, has high K,O content (4.40-6.98 wt.%) and
K,0/Na,0 ratio (1.22-2.59), and low MgO content (0.11-0.51 wt.%) and Mg# value (Figure 2 and Figure S7 in
Supporting Information S1). Subgroup 2, including Gongga Triassic monzogranite, Zheduo Eocene-Oligocene
granite, and Zheduo Pliocene leucogranite, has relatively lower K,O content (1.30-4.53) and K,0/Na,O ratio
(0.24-1.20), and higher MgO content and Mg# value (0.13-1.32 wt.%; Figure 2 and Figure S7 in Supporting
Information S1). Subgroup 1 displays strongly negative Ba, Eu, and Sr anomalies, whereas Subgroup 2 shows
negligible or slightly Eu anomalies with enrichment in Ba and Sr (Figure S8 in Supporting Information S1).
Subgroup 1 has a high (La/Yb), ratio (17.0-264; N denotes the chondrite values from Sun & McDonough, 1989)
with a low Sr/Y ratio (4.72-86), in contrast to the Subgroup 2 samples ((La/Yb), = 8.09-101; Sr/Y = 26-187,
Figure 2). The in situ mineral isotope analyses indicate that Subgroup 1 and Subgroup 2 have distinct isotopic
features (Figure 2 and Figure S9 in Supporting Information S1). Subgroup 1 has enriched Sr-Nd-Hf isotopic
compositions (¥7St/%Sr(r) = 0.7083-0.7155; ey (1) = —12.0 to —=3.7; &,(r) = —11.2 to +3.2) with elevated zircon
5'80 values (8.2-11.1%o). Subgroup 2 has relative depleted Sr-Nd-Hf isotopic compositions (37Sr/8Sr(r) = 0.704
1-0.7061; ey () = —8.2 to 4+0.3; &,,(r) = —1.0 to +7.8) with mantle-like zircon §'30 values (4.2-7.3%o), except
for the Zheduo Oligocene leucogranite showing slightly enriched isotopic compositions (¥St/%6Sr(r) = 0.707
8-0.7088; &y,(1) = —=8.2 to —4.2; &,,(t) = +0.4 to +3.1; 680 = 8.0-9.0%0; Figure 2).

Three main petrogenetic models have been proposed for the formation of granitic rocks, including (a) melting of
crustal materials (i.e., Patifio Douce, 1999); (b) mixing of crustal-derived melts and mantle-derived melts (i.e.,
J.-H. Yang et al., 2007); and (c) differentiation of mantle-derived melts (i.e., Castillo, 2012). Our samples have
no mafic enclaves and show low MgO content (most <1 wt.%) and Mg# values (<50), suggesting that magma
mixing may not have been significant (Figure 2). Their evolved radiogenic isotope values indicate that they did
not form by closed-system fractionation of depleted mantle-derived melts. Triassic and Cenozoic shoshonitic
rocks are present in the EMTP and have been interpreted to be lithospheric mantle-derived (Q. Chen et al., 2017;
Hou et al., 2006; B. Xu et al., 2021). However, these shoshonitic melts cannot produce medium to high-K granitic
magma by closed-system fractional crystallization or significant upper crustal assimilation. Subgroup 1 samples
have high and uniform 5'%0 values, indicating they are sourced from metasedimentary rocks (Figure 2). Subgroup
2 samples show mostly mantle-like §'0 values (Figure 2), but are felsic, without mafic to intermediate compo-
nents. Therefore, we interpret the Gongga-Zheduo granitic rocks to have been derived from melting of crust.

The contrasting isotopic and geochemical compositions between Subgroups 1 and 2 indicate that they have
different crustal sources. Sr, Nd, and Hf isotopic compositions of Subgroup 1 samples are comparable to Song-
pan-Ganzi metasedimentary rocks and S-type granites, and lower crustal rocks of NQT (Figure 2). However, their
elevated §'30 values suggest that they are not sourced from the lower crust of NQT (Figure 2; Long et al., 2015;
Song et al., 2021; Q. Wang et al., 2016). The isotopic compositions better match the metasedimentary rocks of
the Songpan-Ganzi terrane, which are local to the EMTP (Figure 2; de Sigoyer et al., 2014; Roger et al., 1995).
Sediment-derived melts at low-pressure exhibit strongly negative Eu anomaly, as well as high La/Yb relative to
Sr/Y ratios, reflecting both plagioclase and garnet are residuals (Moyen, 2009; Patifio Douce, 1999; Q. Wang
etal., 2016).

The Sr-Nd isotopic compositions of Subgroup 2 samples are more depleted than all crustal materials of NQT
(Figure 2), arguing against a derivation from the NQT. Their Sr-Nd-Hf-O isotopic compositions resemble
Neoproterozoic mafic rocks from the western margin of Yangtze Craton, which is considered as the basement in
the EMTP (de Sigoyer et al., 2014; Zhao et al., 2018). Their high St/Y relative to La/Yb ratios without strongly
negative Eu anomaly indicates the residual minerals are mainly amphibole and garnet. Hence, we interpret both
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Figure 3. Thermodynamic and trace element modeling. (a, ¢) Simplified P-T phase diagram for the average composition of metasedimentary rocks from the
Songpan-Ganzi Basin and Neoproterozoic mafic rocks from the western margin of the Yangtze Craton, calculated with water contents of 3.7 wt.% and 2.2 wt.%,
respectively, corresponding to dehydration melting (Table S7 in Supporting Information S1). The red solid line and red dashed line mark calculated solidus and water
saturation of the system, respectively. Brown dashed lines show the calculated degree of melting (wt.% of melt); purple dashed lines and orange dashed lines represent
garnet and plagioclase proportion (wt.%) in the residue, respectively. Solution models: G-Green et al. (2016); FL-Fuhrman and Lindsley (1988), W/WPH-White
et al. (2014), HP-Holland and Powell (2011). (b, d) Trace element patterns of granitic melts calculated at specific P-T conditions and the average composition of
potential source rocks. The Kd used for modeling are presented in Table S9 in Supporting Information S1. The blue, pale orange, and red shaded areas represent the
overall compositional range of the Subgroup 1 Miocene granites, Subgroup 2 Eocene-Oligocene granites, and Subgroup 2 Pliocene granites, respectively.

Subgroup 1 and Subgroup 2 to have involved local crustal sources in the EMTP and that those sources have
remained the same throughout Mesozoic to Cenozoic time, the age range of our samples.

Thermodynamic and trace element modeling provide additional constraints on the petrogenesis of the samples.
Here, we focus on the Cenozoic granites, which were emplaced during the tie frame of postulated crustal flow
(Figure 3). The residual mineral assemblages, melting degrees, and major element compositions of melts were

Figure 2. Geochemical and isotopic characteristics of the Gongga-Zheduo granitic massif. (a) K,0/Na,O vs. SiO, (wt.%) diagram. (b) MgO (wt.%) vs. SiO, (wt.%)
diagram. Fields of metabasaltic and eclogite melt, and metabasaltic and eclogite melt hybridized with peridotite are after Q. Wang et al. (2006). (c) St/Y vs. (La/Yb)
x diagram. Subscript N denotes chondrite-normalization. (d) SEu vs. Ba/Nb diagram. 5Eu = Eu/[(Smy * Gd)?0.5]. (e) eNd(?) vs. 8Sr/36Sr(r) diagram. The isotopic
compositions of potential source rocks were calculated at 10 Ma. (f) §'%0 (%o) vs. eHf(¢) diagram. The 5'%0 (%o) values for the mantle are from Bindeman (2008).
Modeling parameters are listed in Table S6 in Supporting Information S1.
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obtained using the thermodynamic calculations of Connolly (2009). Trace element modeling was conducted
using a simple batch melting model (Shaw, 1970). Cenozoic Subgroup 1 granites could be generated by 26%—49%
melting of metasedimentary rocks at 0.8-1.0 GPa, 740°C-840°C (including uncertainty; Figure 3). Cenozoic
Subgroup 2 granites could be formed by 10%-23% melting of Neoproterozoic mafic rocks at 1.0-1.3 GPa,
770°C-890°C (including uncertainty; Figure 3). Good fits were obtained for both major and trace elements,
constraining their source characteristics and melting conditions (Figures 2 and 3).

4.3. Large-Scale Crustal Flow or Episodic Crustal Thickening/Uplift

Previous thermochronological studies conducted in the EMTP demonstrated a major phase of rapid uplift
during the Late Miocene to Pliocene (~12—4 Ma), which was proposed to be related to large-scale crustal flow
(Clark, House, et al., 2005; Schoenbohm et al., 2006; E. Wang et al., 2012; H. Zhang et al., 2016; Y.-Z. Zhang
et al., 2017). In consideration of the time required for crustal thickening (~20 m.y.), the large-scale crustal flow
was interpreted to have started at ~40-30 Ma (Clark, House, et al., 2005; Clark & Royden, 2000). This time is
coeval to the onset of magmatism in both the NQT and EMTP (Long et al., 2015; Y.-C. Zeng et al., 2020). Previ-
ous paleo-elevation studies proposed that the NQT reached ~5,000 m elevation by the Eocene (F. Hu et al., 2020;
Q. Xu et al., 2013), indicating a potential lateral pressure gradient existed. Our modeling results show that the
Cenozoic magmas in the EMTP originated at ~30-40 km depth (Figure 3), similar to the depth of proposed
large-scale crustal flow (Bai et al., 2010; Clark, Bush, et al., 2005; Clark & Royden, 2000).

Collectively, all the requirements for large-scale crustal flow during the Cenozoic seem to be met. However,
Cenozoic granites in the EMTP have different isotopic compositions from the crustal rocks of NQT (Figure 2).
If crustal flow exists, the isotopic composition of flowed materials is unlikely to be modified by local partial
melts because: (a) deep-crustal derived magma is scarce in the eastern Songpan-Ganzi terrane (e.g., H. Li &
Zhang, 2013); (b) melting degree of local crust should be lower than 5% (the lower limit of melt volume within
the crustal flow; Bai et al., 2010; Hacker et al., 2014), which is lower than limit for melt extraction (Brown, 2013).
Our data show no evidence that crustal materials derived from the NQT are found at ~30—40 km depth in the
EMTP prior to the Pliocene, our youngest sample. Geophysical observations suggest that crustal flow may be
occurring at present (Bai et al., 2010; Bao et al., 2015; C.-Y. Wang et al., 2010), but such young crustal flow
cannot result in high elevations in the EMTP (Clark & Royden, 2000). Therefore, our results do not support
long-distance crustal flow, but do not rule out regional scale (<200 km) crustal flow. The disordered and weaker
crustal anisotropy in central Tibet, compared to the plateau margins, is also inconsistent with the large-scale
crustal flow (Bao et al., 2020).

We interpret temporal changes in the isotopic data from Cenozoic granites in the EMTP to reflect changes to the
magmatic sources during three episodes of magmatism (Figure 4).

The first magmatic episode (~50—30 Ma) is characterized by Subgroup 2 granites with depleted isotopic composi-
tions and mantle-like 5'0 values (Figure 4, orange box). This episode is generally coeval with Eocene-Oligocene
alkaline magmatism and carbonatites in the EMTP, that is, Mianning-Dechang (Hou et al., 2006; B. Xu et al., 2021)
and Batang-Dali magmatism (Chung et al., 1998; B. Xu et al., 2021). These lithospheric mantle-derived magmas
could have provided heat for locally melting of metabasaltic rocks in the middle-lower crust, which may also
weaken the lithosphere. During this period, early crustal uplift has been documented in some areas in the EMTP,
which is related to crustal thickening by compression (E. Wang et al., 2012; H. Zhang et al., 2016). Compressive
thickening is supported by the Late Eocene to Oligocene fold and thrust in eastern Tibet (Cao et al., 2020; H. Li
& Zhang, 2013) and high paleo-elevations (Hoke et al., 2014; S. Li, Currie, Rowley, & Ingalls, 2015).

The second magmatic episode (~20-10 Ma) is characterized by a shift to Subgroup 1 granites with more
enriched isotope ratios and elevated §'30 values (Figure 4; green box). Thermochronology data suggests this was
a period of general stability with relatively slow uplift rates (E. Wang et al., 2012; H. Zhang et al., 2016; Y.-Z.
Zhang et al., 2017). The isotopic data suggests that magmas from this episode involved the most supracrustal
metasedimentary material with minimal mantle-involvement. In addition, the magmatism was active prior to
the onset of the Xianshuihe strike-slip fault zone (~13-9 Ma; S. Wang et al., 2009; Y.-Z. Zhang et al., 2017).
Hence, mantle-derived magma or shear heating are not likely the reason for this episode of magmatism. In
turn, magmatism may have softened the crust and facilitated to the strike-slip movement of Xianshuihe Fault (J.
Yang et al., 2020). Low exhumation rates during this time also argue against a decompression melting (E. Wang
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Figure 4. Temporal changes in the characteristics of Cenozoic magmatism in the EMTP. (a) Probability density plot of
Gongga-Zheduo granitic massif, Mianning-Dechang alkaline rocks, and Batang-Dali alkaline rocks. Data sources are listed
in Table S10 in Supporting Information S1. (b) Exhumation history of the EMTP. Data of Longmenshan and Gongga-Jiulong
areas are from E. Wang et al. (2012) and H. Zhang et al. (2016), respectively. (c—f) Initial 8’St/%°Sr, eNd(z), eHf(¢), 5'°0 (%0)
vs. age (Ma) of Gongga-Zheduo granitic rocks. Three magmatic episodes, shown by orange, green and purple dashed boxes,
are documented. Symbols for rock units are the same as Figure 2.
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et al., 2012; H. Zhang et al., 2016). Therefore, the most likely heat source for episode 2 magmatism is radiogenic
heating after crustal thickening (Bea, 2012).

The third magmatic episode (~10-4 Ma) is characterized by Subgroup 2 granites (Figure 4, purple box), but
their higher SiO, content, Rb/Sr, and Th/La ratios with lower La content reflect higher degrees of fractionation
than granites of episode 1 (Figure S7 in Supporting Information S1). The EMTP was experiencing uplift and
exhumation during this time (Clark, House, et al., 2005; E. Wang et al., 2012; H. Zhang et al., 2016). There
are several lines of evidence to suggest that this is related to upwelling of asthenospheric mantle including (a)
~12 Ma alkaline rocks in the Mianning-Dechang area (B. Xu et al., 2021), (b) abnormally high lithospheric heat
flow, mantle signatures of *He/*He from hot springs (S. Hu et al., 2000; M. Zhang et al., 2021), (c) upper mantle
low-velocity anomalies (Z. Huang et al., 2019; W. Wang et al., 2021), and (d) dynamic support for high elevations
(Bao et al., 2020). Geophysical observations suggest that northwestward downwelling of the Indian Block (Z.
Huang et al., 2019) and regional lithospheric delamination (W. Wang et al., 2021) could account for the upwelling
of the asthenosphere. We suggest that mantle upwelling caused (re)melting of metabasaltic rocks in the EMTP
during episode 3.

5. Conclusions

The Gongga-Zheduo granitic massif contains Mesozoic (~214-172 Ma) to Cenozoic (~50-4 Ma) granitoid rocks
and helps to constrain crustal compositions and sources in the EMTP. The granitoid rocks can be divided into
two subgroups according to their geochemical and isotopic characteristics. Subgroup 1 was derived from partial
melting of metasedimentary rocks of Songpan-Ganzi terrane, and Subgroup 2 was derived from partial melting
of metabasaltic rocks of western margin of the Yangtze Craton. Evidence for crustal materials derived from the
NQT were not observed and we suggest that the mid-lower crust in the EMTP consists entirely of locally derived
crustal rocks. Changes in the magmatic sources during the Cenozoic correlate well with changes in uplift and
exhumation. Cenozoic magmatism was primarily controlled by mantle-crust interactions, which in turn may have
modified the lithospheric (especially crustal) rheology in eastern Tibet. The continued indentation of India and
changes in crustal rheology of Asia shaped the present eastern boundary of the Tibetan Plateau.

Data Availability Statement

All the data for this research are available in Supporting Information S1 and online (https://doi.org/10.6084/
mO.figshare.19376033.v2).
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