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Mantle-derived primary magmas generally have FeOtot contents of about 11 wt.%. 

However, some primary melts show extremely high FeOtot (>13 wt.%) with high MgO (> 

12 wt.%) (ferropicrite) [1]. Considering the influence of chemical and mineral 

compositions of the mantle source on melt compositions, it has been argued that 

ferropicrites may be near-primary partial melts of pyroxenite formed in the convecting 

mantle [2-4], whereas others favor an origin by partial melting of an iron-rich peridotitic 

mantle source [5, 6]. Melting experiments have shown that melting conditions such as 

pressure and temperature can strongly influence the melt compositions, such that 

ferropicrites may be generated by partial melting of an olivine-dominated mantle source 

at ~5 GPa [5]. Some ferropicrites seem to be more oxidized than other magmas, as 

suggested from the Panzhihua intrusions in the Emeishan large igneous province [7], 

which may imply melting of a more oxidized mantle source. Furthermore, Johnston and 

Stout [8] showed that oxygen fugacity exerts great control on the compositions and 

stabilities of Cr-Fe-rich minerals, and may therefore significantly affect mantle-derived 

melt compositions. Local oxygen fugacity (fO2) and solidus temperature of the mantle 

can be dramatically affected by recycled sedimentary carbonates. This raises the question 

as to whether sedimentary carbonate recycling could have indirectly contributed to the 

formation of iron-rich melts in the mantle. 

Here, we report magnesioferrite-bearing peridotite xenoliths from the Dalihu 

Neogene basalt and demonstrate that the recycling of sedimentary carbonate into the 

mantle can induce a high-fO2 environment, and that partial melting of peridotite or 

pyroxenite in high-fO2 conditions may produce iron-rich melts.  

The Dalihu Neogene basalt is located in the Inner Mongolia–Daxinganling Orogenic 

Belt (IMDOB) (Fig. S1 online), which is the eastern extension of the Central Asian 

Orogenic Belt (see Appendix for detailed geological setting). Volcanic activity at Dalihu 

began approximately 15 Myr ago and continued to as recently as 0.16-0.19 Ma. In 

addition to the peridotite xenoliths investigated here (Fig. 1), the Dalihu basalts also 

contain abundant carbonatitic xenoliths that record recycling of sedimentary carbonate 

rocks to deep mantle [9]. Seven lherzolite xenoliths are studied here: they are mainly 

composed of olivine (Ol) (~50%), orthopyroxene (~Opx) (30%), clinopyroxene (Cpx) 

(15%) and spinel (Sp) (5%). Two types of olivine were identified in these peridotites, one 



has normal Mg# (100Mg/(Mg+Fe) for mantle olivine (90.5-91.0) and contains no 

exsolution (Fig. S2 online), while the other contains abundant exsolution lamellae of Fe-

Mg-Ni oxides (Fig. 1b, c) and has appreciably higher Mg# (95.2-98.1) (Table S1 online). 

The high Mg# of olivines that bear exsolution lamellae correlates positively with the 

abundance of exsolutions (Fig. 1c, d). Magnesioferrite-rich spinels and hematite with 

extremely high Fe3+/ΣFe ratio (>0.95) were identified, and generally coexist with the high 

Mg# olivine (Fig. 1b, c). The magnesioferritic spinels occur as co-existing Mg-rich and 

Fe-rich end members [ (Mg0.88Fe0.10
2+ Mn0.01Ni0.01)1.00

2+ (Fe1.85
3+ Al0.13Cr0.01)1.99

3+ O4 

and,(Ni0.54Mg0.40Fe0.06
2+ )1.00

2+ (Fe1.88
3+ Al0.10Cr0.01)1.99

3+ O4]. Hematite has ~3% wt.% Al2O3 

with minor Cr and Mg (Table S1 online). Clinopyroxenes fall into two groups with 

differing Sr isotopic character: those with high Sr content show homogeneous and low 

87Sr/86Sr ratio, whereas clinopyroxenes with low Sr content show variation in 87Sr/86Sr 

ratio from core to rim (Fig. S3, Table S2 online, see Appendix for Methods).  

(1) Mantle oxidization induced by sedimentary carbonate recycling. The extremely Mg-

rich olivine may result from the exsolution of iron in a high fO2 environment [8, 10], Fe-

Mg exchange between olivine and other phase [11], or it may be inherited from high-Mg# 

materials such as metamorphosed serpentine [12]. Olivines in the Dalihu peridotites 

generally have Mg# of 90.5-91.0, and no serpentine (or other high Mg# mineral) occurs, 

indicating that the Mg-rich olivine most probably resulted from a local high-fO2 mantle 

environment rather than from the transformation of high-Mg# minerals. Furthermore, 

magnesioferrite (MgFe2O4) is a rare mineral of the spinel group, and generally exists 

under oxidized conditions. The coexistence of Mg-rich olivine and high-Fe3+/ΣFe phases 

in the Dalihu peridotite, and the intergrowth of magnesioferrite and hematite [13] thus 

records a strongly oxidized environment. Subsolidus oxidation of olivine converts Fe2+ 

into Fe3+, which cannot fit in the octahedral site of olivine, resulting in the exsolution of 

magnesioferrite and hematite and an increase in the Mg# of the remaining olivine. This 

has been demonstrated experimentally to occur through reaction with infiltrating 

carbonate melts [14].  

The carbonatitic xenoliths carried by the Dalihu basalt retain the trace element 

patterns and δ18OSMOW values of argillaceous limestone, suggesting an origin by 

subduction of carbonate-rich sediments from the surface into the mantle [9]. Since 



carbonate-rich sediments generally have much higher 87Sr/86Sr ratios than mantle 

peridotites, the clinopyroxenes formed by the reaction between carbonate melts and 

peridotites should track this recycling because clinopyroxenes sequester most of the Sr in 

peridotites.  

Although most clinopyroxene grains preserve the homogeneous and low 87Sr/86Sr of 

the original mantle rock, some grains show increasing 87Sr/86Sr ratios from core to rim 

caused by reaction with infiltrating recycled sedimentary carbonate melts (Fig. S3 online). 

Subducted carbonate-rich sediments can potentially increase the fO2 of surrounding 

mantle during reduction of carbonate to graphite, or by the addition of CO2 fluid that 

results from decarbonation. It is thus reasonable to speculate that the extremely oxidized 

environment recorded by the peridotite could have been caused by the subduction of 

sedimentary carbonate. 

(2) Origin of iron-rich mantle melts in high fO2 conditions. To simulate the chemical 

compositions of mantle-derived melts formed in oxidized  conditions, partial melting of 

peridotite and pyroxenite under various high fO2 conditions (from QFM +0 to QFM +3) 

(Fig. 2) were modelled using pMELTS [15]. Since ferropicrite is associated with 

continental flood basalt provinces [2], which are resulted from the plume-type active 

upwelling, isentropic decompression melting model was used. Primitive mantle, depleted 

mantle, the Dalihu peridotites and the Hannuoba pyroxenites were used as source 

materials; detailed modeling information is described in the Appendix. Our modeling 

results show that melt compositions are strongly affected by fO2, and show high FeOtot 

and MgO at high fO2. Generally, the FeOtot and MgO contents of melts increase with 

increasing fO2 (Fig. 2a, b). Peridotite-derived melts have FeOtot of 12.6 wt.%-13.6 wt.% 

at QFM+1, which increase sharply to about 16 wt.% at QFM+2.75 (Fig. 2a); Pyroxenite-

derived melt has FeOtot about 15 wt.% at QFM+1: this also increases sharply to 16 wt.% 

at QFM+2.75. Both modal olivine percentage in residue phases and the iron content in 

olivine decrease sharply with increasing oxygen fugacity (Fig. 2c), these may be the 

reason why FeOtot in melt increases with increasing fO2. 

The high FeOtot and MgO of primitive melts produced at high fO2 agrees well with 

the compositions of ferropicrites (FeOtot >13 wt.%, MgO ~19 wt.%) [5]. Although the 

oxygen fugacity of primary ferropicrite is rarely constrained, the high fO2 indicated by 



high-Ti basalts from the Emeishan large igneous province [7] implies that the mantle 

source of some ferropicrite may be oxidized as well. This implies that ferropicrite could 

be produced by the partial melting of oxidized mantle peridotite, and that a Fe-enriched 

mantle source [1] is not necessary. Some pyroxenite-derived melts formed at normal 

mantle fO2 may have higher FeOtot than melts of peridotite, and have been advocated to 

explain ferropicrite petrogenesis [4]. However, the Al2O3 contents (about 14 wt.%) 

(Tables S3, S4 online) of these melts are much higher than in ferropicrites (<10 wt.%) 

[5]. Nevertheless, melting of pyroxenite under high fO2 may overcome this inconsistency 

and produce melts with high FeOtot, MgO and low Al2O3 contents that agree well with 

natural ferropicrites (Fig. 2). Overall, our 

 the 

formation of iron-rich mantle melts, particularly ferropicrites. The origin of the oxidized 

conditions may be related to the subduction of carbonates, 

. 
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Figure captions: 

Fig. 1 Micrographs of the Dalihu peridotite. (a) Thin section of peridotite xenolith 

showing red, oxidized rims to olivines. (b, c) SEM pictures showing the occurrence of 

high Mg# olivine and high-Fe3+ phases – bright lines and spots are magnesioferrite-rich 

spinel and hematite. Yellow circles are analysis spots with analysis spot numbers: see 

Table S1 (online) for corresponding analytical results. (d) Correlation between olivine 

Mg# and abundance of exsolutions of high-Fe3+ phases. S  Mfr: 

magnesioferrite; Hem: hematite; Ol: olivine; Sp: spinel; Opx: orthopyroxene; Cpx: 

clinopyroxene; Mfr-Hem: Intergrowth of magnesioferrite and hematite. 

Fig. 2 （Color online）Results of pMELTS calculations when pressure is 2.0 GPa. 

Variations of FeOtot (a), MgO (b) content in partial melts of peridotite and pyroxenite as 

function of fO2. (c) Variations of modal olivine percentage in residue phase and FeOtot 

content in olivine from primitive mantle as function of fO2. The FeOtot content of primary 

melt of Parana-Etendeka ferropicrite (solid line) and picrite (dashed line) are also shown 

for comparison [5] . See appendix for data sources and detailed explanation. 
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