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ABSTRACT
The processes and fluxes that produce the distinct compositional structure of Earth’s con-

tinental crust by subduction remain controversial. The rates of oceanic crust production, in 
contrast, are well quantified and are generally believed to be faster than those responsible for 
building magmatic systems in subduction settings. Here we show that a recently recognized 
crustal section, the 30-km-thick Ordovician Sierra Valle Fértil–Sierra Famatina complex in 
Argentina, was built magmatically within only ~4 m.y. More than half of the crustal section 
represents additions from the mantle, and is preserved as mafic igneous rocks and mafic-
ultramafic cumulates; the remainder is tonalite to granodiorite with evidence for widespread 
assimilation from highly melted metasedimentary units. U-Pb zircon geochronology reveals 
that the construction of the arc was not a simple bottom-up construction process. This continu-
ous exposure of the arc crust allows the quantification of field constrained magmatic addition 
rates of 300–400 km3 km–1 m.y.–1. These rates are similar to those determined for modern slow-
spreading mid-ocean ridges and are of the same magnitude as magmatic addition rates required 
to build certain large segments of the continental masses such as the Arabian-Nubian shield, 
among others. The implication is that significant convective removal of arc roots is required 
over time in order to build the modern continental crust via subduction-related magmatism.

INTRODUCTION
Subduction-related arc magmatism is 

regarded to be one of the main mechanisms 
responsible for generating intermediate com-
position continental crust over geologic time 
(Taylor and McLennan, 1985; Hawkesworth and 
Kemp, 2006; Jagoutz, 2014). Despite extensive 
experimental and observational work on magma-
tism at convergent margins (Eichelberger, 1978; 
Grove et al., 2012; Stern, 2002), the controls and 
time scales producing compositional diversifica-
tion such as rates of melting (slab, mantle wedge, 
mantle lithosphere, and upper plate crust) and 
involvement of the upper crustal plate remain 
highly controversial (Ducea et al., 2015a). 
Mantle-derived magmatic fluxes are not well 
constrained (Jicha and Jagoutz, 2015; Ducea et 
al., 2015b) and we lack a unifying mechanism 
for quantifying melting in and above subduct-
ing slabs. Direct geological evidence for basalt–
upper plate interaction is hampered by sparse 
field exposures of the lower parts of the subduc-
tion system, in particular the lower crust (Salis-
bury and Fountain, 1990; Hacker et al., 2015).

The recently discovered Sierra Valle Fér-
til crustal arc section (Otamendi et al., 2009) 

is, in combination with the neighboring Sierra 
Famatina (Astini and Dávila, 2004; Tibaldi et al., 
2013), one of the best quasi-continuous vertical 
exposures of a subduction-related continental 
magmatic arc on Earth (Fig. 1). Here we com-
bine newly obtained and previously published 
geochronology, field geology, and geobarometry 
data to extract critical magmatic addition rate 
(Reymer and Schubert, 1984) parameters that 
help our overall understanding of magmatism in 
arcs. We show that a thickness of ~30 km of arc 
crust was entirely built by magmatic processes 
within ~4 m.y., much faster than most predic-
tions, although in line with some very recent 
results from other arcs (Jicha and Jagoutz, 2015) 
and potentially significant to understanding the 
production of continental crust over time.

GEOLOGIC BACKGROUND
The Sierra Valle Fértil is an ~150-km-long, 

~30-km-wide range exposing exclusively base-
ment rocks that represent a tilted section through 
the Ordovician Famatinian-Puna arc (Pankhurst 
et al., 1998). The Famatinian-Puna arc (Ducea 
et al., 2015c) is a subduction-related magmatic 
arc found in several other Sierras Pampeanas 
ranges, notably the nearby Sierra Famatinia 
(the type locality for the Famatinian arc), and 

extends discontinuously for a length >2000 km 
from southern Peru to Patagonia. Sierra Valle 
Fértil geology is relatively uniform along strike 
(Fig. 1) and it represents an intact tilted section 
of the Famatinian arc from ~30 km paleodepths 
along the western margins to ~8 km along its 
eastern margin (Tibaldi et al., 2013). Volca-
nic rocks of the arc are exposed in the Sierra 
Famatinia, immediately to the northeast. A fault-
bound basin formed during Permian–Triassic 
continental extension separates the two ranges. 
To the west, the section is cut by the Valle Fértil 
lineament, a major shear zone representing a ter-
rane boundary (Mulcahy et al., 2014). The deep-
est exposure levels of the Famatinian arc there 
(Tibaldi et al., 2013), based on the geochemistry 
of felsic plutons higher in the section (Otamendi 
et al., 2012; Walker et al., 2015), overall coin-
cide with the lowest part of the arc crust.

The upper part of the Sierra Valle Fértil sec-
tion is dominated by I-type granodiorites and 
lesser amounts of tonalite, together amounting 
to intrusive volumes on the scale of a composite 
batholith (Fig. 1), very similar to the major Meso-
zoic and younger Cordilleran (Andean) arcs of 
North America and South America. The Famatin-
ian arc is for the most part isotopically enriched, 
i.e., has elevated initial isotopic ratios of 87Sr/86Sr 
(>0.706) and negative initial eNd (<–2), similar to 
the modern central Andes (Otamendi et al., 2009; 
Walker et al., 2015). These isotopic character-
istics are seen in mafic rocks just as in higher 
silica intermediate or felsic magmas (Ducea et 
al., 2015c). The section transitions downward to 
mafic rocks (gabbros and diorites) and mafic and 
ultramafic cumulate. The total thickness of mafic 
and ultramafic units is ~10 km; however, because 
many of those units are cumulates and a fraction 
of the mass of mafic input was incorporated in 
the more intermediate products found closer to 
the arc surface, we estimate that 12–15 km of 
mafic magma was added to the Valle Fértil arc 
section. Individual mafic additions to the crust 
take the form of 10–500-m-thick paleohorizontal 
sills in their emplacement (pretilting) orientation. 
However, the section is complex along strike, as *E-mail: ducea@email.arizona.edu
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more tonalites are found locally in the deeper 
part of the section in places (Fig. 1). The only 
country rocks of the Famatinian arc are high-
grade (amphibolite and granulite facies) mig-
matized equivalents of the regionally extensive 
Puncoviscano Formation (Ducea et al., 2015c), 
a turbidite sequence of Cambrian–Ordovician 
age (Pearson et al., 2013) of probable passive 
margin origin.

Regionally, from Peru to Patagonia, the 
age distribution of the Famatinian arc ranges 
between 495 Ma and ca. 466 Ma, but that range 
only bounds the activity of the arc at the largest 
scales. Here we report new age data collected 
from the Sierra Valle Fértil arc section and pres-
ent a reinterpretation of previously published 
age data (Ducea et al., 2010).

METHODS AND RESULTS
Field work and sample collection, as well 

as petrographic and geochemical work comple-
menting this paper, were reported by Tibaldi et 
al. (2013), Ducea et al. (2015c), and Walker et 
al. (2015). Six new high-precision U-Pb chem-
ical abrasion–thermal ionization mass spec-
trometry (CA-TIMS) zircon ages are reported 
on gabbros and cumulate rocks from the mafic 
section, including intermediate products, and 
one upper crustal granodiorite. Analytical tech-
niques and tabulated results are presented in 
the GSA Data Repository1.

1 GSA Data Repository item 2017061, analytical 
techniques and zircon U-Pb ages, is available online 
at www.geosociety.org /datarepository /2017, or on 
request from editing@geosociety.org.

The new samples were collected from the 
same general area where previous petrologic 
studies of the Sierra Valle Fértil were conducted 
(Otamendi et al., 2009, 2012; Ducea et al., 2010; 
Walker et al., 2015). Because the Valle Fértil 
mountain range is a tilted exposure through an 
arc, our sampling path follows, from west to 
east, the major igneous units from deeper in the 
section upward. Therefore, the studied section 
represents a paleo-vertical sampling transect 
into the Famatinian arc.

The summary of zircon U-Pb geochronology 
data, new and previously published, shows a 
much tighter age range, ~4 m.y. A couple of zir-
con rim ages of 468.9 Ma and 469.8 Ma (see the 
Data Repository) are interpreted to be metamor-
phic ages and are consistent with metamorphic 
zircon U-Pb ages previously measured (Rapela 
et al., 2001) (with lesser precision) on metasedi-
mentary rocks from the Famatinian arc. They 
are within error identical to the magmatic age of 
the section and demonstrate that metamorphic 
zircons or zircon rims grow synchronously with 
high-flux crustal-scale magmatism in middle to 
deep crustal sections of magmatic arcs.

DISCUSSION
Arc magmatism manifests on both local and 

plate-scale time scales. Individual volcanic sys-
tems can have characteristic life spans from 200 
to 300 k.y. to 5–8 m.y. (Ducea et al., 2015a), 
similar to estimates for chemical differentiation 
within discrete volcanic centers (Hawkesworth 
et al., 2000) and plutonic systems (Coleman et 
al., 2004). However, it has been much more diffi-
cult to constrain the characteristic time scales to 

create entirely new arc crust by those processes. 
Here we show that the composite age data for 
the Sierra Valle Fértil imply that the arc sec-
tion was intruded by voluminous mafic magma 
that internally differentiated, producing inter-
mediate melts that then interacted with variable 
amounts of the highly migmatized metapelites 
and their partial melts to produce heterogeneous 
tonalities and upper crustal granodiorites on a 
time scale of only 4 m.y. In addition, the data in 
Figure 2 show that the process of arc construc-
tion was not simply a progressive bottom-up pro-
cess. For example, the sample yielding the oldest 
of the CA-TIMS dates occurs near the top of the 
mafic complex, and continued input to the mafic 
complex was occurring while the more evolved 
portions of the arc were being established.

If close to 15 km of the arc thickness is rep-
resented by mafic additions from the mantle, 
that composes about half of the crustal thickness 
and, given the overwhelming predominance of 
arc magmatic products in the crust, it also rep-
resents 50% of the mass budget of the arc, con-
sistent with geochemical models from here or 
elsewhere (Ducea et al., 2015b). Most active 
arcs are ~30–40 km wide and migrate laterally at 
2–6 km m.y.–1 (Ducea et al., 2015b). Assuming 
an average lateral migration in the Famatinian 
arc of 4 km m.y.–1 and an instantaneous width of 
35 km, the integrated lateral production of mafic 
magma was 50 km wide over 4 m.y., or a little 
>12 km m.y.–1. The overall magmatic addition 
rates (the sum of all magmatic products) are 12 
× 30 km = 360 km3 km–1 m.y.–1, about half of 
which is mafic melt. These numbers are simi-
lar to the recently reported magmatic addition 
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rates for relevant modern and ancient island arcs 
(Jicha and Jagoutz, 2015), and about an order of 
magnitude higher than the classic estimates for 
magmatic addition rates in arcs (Reymer and 
Schubert, 1984), which are integrated over life-
times of tens to hundreds of millions of years. 
The mafic addition rates are comparable to 
those at slow-spreading mid-ocean ridges and 
are about half the average addition rates at mid-
ocean ridges (Cogné and Humler, 2004).

The total magmatic addition of the Famatin-
ian arc in the Sierra Valle Fértil–Sierra de Fama-
tinia, representing the total amount of magmatic 
rocks formed during the 472–468 Ma period, 
includes mafic additions and the recycled preex-
isting crustal rocks via upper plate partial melt-
ing. The total magmatic addition is comparable 
to the 320 km3 km–1 m.y.–1 average oceanic rates 
(Reymer and Schubert, 1984). If these mafic rates 
reflect standard mantle melt productivity under 
thin arcs (oceanic or transitional continental), 

then the ones determined for thick Andean-type 
arcs (total magmatic rates between 10 and 150 
km3 km–1 m.y.–1), half of which is believed to 
be mafic (Paterson and Ducea, 2015), are much 
lower even during flare-up periods. This is a 
fundamental difference between thin and thick 
arcs that contradicts a common assumption that 
all arcs are the subject to identical processes of 
melting in the mantle wedge with similar melt 
productivities (Grove et al., 2012), or that per-
haps melt productivity is proportional to con-
vergence rates.

Ultrahigh magmatic addition rates (300–400 
km3 km–1 m.y.–1) similar to those described here 
appear to characterize parts of the continental 
crust (Coleman et al., 2004) such as the Arabian-
Nubian shield (900–600 Ma), the Svekocarelian 
shield (1900–1700 Ma), or the peri-Gondwanan 
arc terranes of Europe (700–400 Ma). The 
causes of their high addition rates have been 
debated for decades and remain unresolved. We 

suggest here that those continental crustal seg-
ments formed in a manner similar to the case 
discussed here: high arc migration rates across 
trenches (either toward or away from the trench) 
can lead to arc sweeps that result in fast produc-
tion of new continental crust over larger areas, 
as we suspect was the case with these classic 
examples of unusually high magmatic addition 
rates. Moreover, we suspect that the majority of 
the continental crust was formed in such arcs 
over the course of Earth’s history (Condie and 
Kroner, 2013); the average trace elemental bud-
get of the continental crust is consistent with 
its derivation from thin arcs (e.g., Taylor and 
McLennan, 1985).

We further propose that the main cause for 
reducing melt productivity in thick Andean arcs 
is the crowding effect of cumulate buildup under 
the arc (DeCelles et al., 2009). Most arcs have a 
longer lifetime than Sierra Valle Fértil; on aver-
age oceanic arcs live ~40 m.y., whereas Andean 
arcs have an average life of 100 m.y. (Ducea 
et al., 2015a). In arcs under flare-up mode, or 
in slowly migrating arcs, the buildup of mafic 
ultramafic cumulates can rapidly generate enor-
mously thick roots (Ducea and Saleeby, 1998) 
that crowd the mantle wedge to the point of inter-
rupting normal wedge convection or temporarily 
stopping it (Ducea et al., 2015a). Thick Cordil-
leran arcs are probably plagued by this problem 
for much of their history, excepting times imme-
diately following delamination of the lithosphere.

Arc cumulates are typically pyroxene and 
amphibole rich (with garnet being an abundant 
additional phase in continental arcs) and are 
slightly denser in island arcs to significantly 
denser in continental arcs (Jull and Kelemen, 
2001) than the underlying mantle. Therefore 
they are removed and recycled into the con-
vective mantle as Raleigh-Taylor instabilities. 
Long-lived arcs and/or slowly migrating arcs 
generate mafic and/or ultramafic roots that are 
much thicker than 30 km (Ducea et al., 2015a). 
If the Valle Fértil–Famatina addition rates were 
characteristic for arc magmatism over time, 4–8 
times more crust would form over 2–4 b.y. of 
presumed subduction-like processes and arc 
magmatism, compared to the present-day vol-
ume of continental crust. This is calculated using 
the modern total length of trenches today (55 × 
103 km), an average crustal thickness of 30 km 
in arcs, a 350 km3 km–1 m.y.–1 addition rate deter-
mined here that yields 8 × 108 km3 of arc crust 
produced in 2 b.y. compared to 1.5–1.8 × 108 
km3, which is the modern volume of continental 
crust. That excess material is somewhat improp-
erly referred to as crust, because it is dominated 
by mafic-ultramafic cumulate and restite materi-
als (Jagoutz, 2014). The bulk of the missing crust 
likely resides today in the mantle as a reservoir 
of recycled (delaminated) and dispersed nonpe-
ridotitic mass, which is distinct from other forms 
of recycled crust, such as subducted sediment.
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Figure 2. U-Pb ages projected onto an averaged one-dimensional depth section. Because 
the thickness of the distinct compositional domains is not uniform along the strike of the arc 
section, it was necessary to create an average thickness and project the data onto that. Rela-
tive depths and spacing are preserved, but actual depths will vary for the deepest samples. 
Vertical colored bar of ~4 m.y. bounds the new high-precision chemical abrasion–thermal 
ionization mass spectrometry (CA-TIMS) data and overlaps uncertainties in all available data 
(LA-MC–ICP-MS—laser ablation–multicollector–inductively coupled plasma–mass spectrom-
etry). We take the 4 m.y. range as the duration of igneous activity that formed the arc section. 
Errors are given at 2s.
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