Data Assimilation
and its applications
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Inverse Problem — Conceptual understanding

» The forward problem can be conceptually formulated as follows:
Model parameters - Data

» The inverse problem - relates the model parameters to the data that
we observe:
Data - Model parameters

» The transformation from data to model parameters (or vice versa) is a

result of the interaction of a physical system with the object that we
wish to infer properties about.
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Some examples

Physical system

Governing
equations

Physical quantity

Observed data

Earth's Newton’s law of . . :
. : . Density Gravitational field
gravitational field | gravity
Earth's magnetic | Maxwell’s Magnetic Magnetic field
field (at the equations suceptibility
surface)
Seismic waves Wave equation
Wave-speed : :

(from (density) Particle velocity
earthquakes) Y
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Key elements for successful solution?

Cooking book
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List of recipes

» Optimal interpolation
» Kriging

» Variational methods
» Ensemble methods

» Hybrid methods
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Data Assimilation — Main ingredients

» Two sources of information about the true state of the nature:

» Model (abstraction of reality in terms of a set of
differential equations)

» Measurements (measure of certain quantities of
interest)

» Uncertainties are present in both worlds.

» Prior knowledge (expert opinion)
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» The goal: of the truth based on the
combination of both uncertain sources of information

1T TuNK Hou Srtounn e MORE
EXPLIANT nEZe N StTter Two. W
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The goal: An optimal estimate of the truth based on the
combination of both uncertain sources of information
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Updated estimate
with errors
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A different flavour for everyone / every challenge

Did you notice how a country-specific cuisine tasted differently
In said country and abroad?

» Chinese food tastes like Indonesian in Netherlands and
like Viethamese in France .

» ltalian pizza you have at your local Italian restaurant is
rarely the same as the one you have in Italy.

Foods are tailored to meet the specific preferences of
each country
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A different flavour for everyone / every challenge

GIASBERGE N e

“The podiatrist wants jam on his toast, the psychiatrist
wants nuts on his cereal, the plastic surgeon wants
no wrinkles on her bacon, and the fertility doctor
wants his eggs frozen.”
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Model and its uncertainties

ClimplsiyGandciences
Sustainability

-= (aelipesim epderssint|e
- UeortRsisketiptygsies
-= Diffeneotielieldphysics
-- ..Different scales
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Observations/Measurements
and uncertainties

BiindEitsadiGansciences

Sustainability
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We solve different problems with
the same approach (cross-fertilization)

E@H@W@‘s@iences
ustainability

> Estinmrelesamrdalbparameters measuring directly not feasible
> |Inkegatiingadhéotimation firo ge olegmateam eataaf giffereatasales
> Predictthennen behavi®és for the dynamical parameters

> Predikaepgnepths ofanbels ehéghreemcentrations
» Optimize dredging cycle fuel cost, cycle time

> Ristditvetbiog ¢he plaissions sources
» Optimize production strategies
» Optimize well locations
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Probabllistic Data Assimilation — Bayes’ rule

o

(X Y) Posterior probability

|
_PyIX)P(X)
i (X | y) - P (y) P (X) Prior probability
P(x1y) = Py 1X)P (X PYI) L
P (Y) Probability of observations
Bayes’ Rule
Sequ:ential Varia:tional
Methods Methods

Adjoint based

Kalman Filter methods
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Classical Kalman Filter Steps

measurement

y° (1)

2) Analysis Step

Combining forecast and 1) Fore,
measurements weighted BaSed astg Step
by Kalman Gain Moqey

.‘K Xa(tk+1) and Pa(tk+1)

Xf (tk+2) and Pf (tk+2)

x*(t,)and P*(t,)

Step O\
\<. 1) Forecast Xf (tk+1) and Pf (tk+1)

Mode!

pased on
l l L,

4 tk tk +1 tk +2
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System and the measurements:

X' (t,y) = M (X' (t,)) + w(t,) w~N(0 Q)
yO (tk+1) - H (tk+1)Xt (tk+1) +V(tk+l) vV~ N (O, R)

1) Forecast step:
X' (t.) = E(X'(t,.1)) = M (5, )X (t,)
P f (tk+1) = E[(Xt(tk+1) — X f (tk+1))( Xt(tk+1) - X f (tk+1))T]

2) Analysis step:
Xa (tk+1) - Xf (tk+1) + K (tk+1)(yo (tk+1) o H (tk+1)xf (tk+1))

P* (tk+1) - E[(Xt (tk+1) - X* (tk+1))(xt (tk+1) - X* (tk+1))T ]
K(te) =P (te.)H () "TH ()P (Gea)H ()" + RG]

Model
and
observations

Estimation
using
Kalman
Filter

Calculates only the first statistical moments: mean and covariance
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Non-classical Kalman Filters

» Classical Kalman Filter assumes:
* Linearity for the model operator and observation operator.
» Gaussian distribution for the statistics of the error distribution.

* But in reality, this is usually not the case

* Remedies:
* The Extended Kalman filter
Was used in the Apollo missions, but it is not practical for complex
systems because of computational burden.
« Ensemble Kalman filter and adjoint based methods can be used
with a nonlinear model and nonlinear measurement model.
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Ensemble Kalman Filter

« Advantages
1. Can be used for nonlinear models.
2. Fairly simple to implement.
3. No need to go into the details of the forward model.
4. Computational advantages (lower rank covariances)

* Disadvantages

1. Itis very sensitive to the “good” knowledge of the statistics.
2. Requires a large number of members of the ensemble to
converge to the real parameter.
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Ensemble Kalman Filter
— v 1
X, Amhkiak stake X(tk+1):WZ§if(tk+l)
" i=1
R&I}M Mo wac bindiesr i X,
ur«wa o bl n«({um& ’{f'(te)
o m‘ ® ' > —7" {t‘):‘L
'.'p’/: fv :‘/vt(?;(to))"f'w('%)

?w?agcutl_ J_G‘-(Jt( Mafenabl,
‘*‘“"b A amngimal mes ol

E L) =& () + K, DY (G) —H(t0)& () +Vi (0]

P (tes) = P (ty) = EIX(tep) = X" (o)) (X(Ep) =X (1)) ]

P2 (t.1) = P (tep) = ELX(t.p) = X2 () (X(p) = X2 (b)) "]
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Measurements with
errors

/ \ True state

\

Initial state with errors
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Measurements with
errors

RN

Model prediction
with errors

True state
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Measurements with
errors

/ \ True state

Updated estimate

with errors

Model prediction
with errors
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Measurements with
errors

RN

True state

New model prediction

~witherrors
Updated estimate
with errors
>
Time
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Measurements with

yrs \

True state

Updated estimate

with errors
>
Time
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Variational methods

Bayes’ Rule
|
v

Sequential Variational

Methods Methods
z minJ(X,u)

: Adjoint based
Kalman Filter
methods
e

X represents the state variables,
INn our case pressure and saturation

U represents

e the reservoir model parameters that we want to estimate
In the history matching, or

e the control parameters that we want to optimally set in the
field development plan
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Variational methods — the principle

A
J(x)

minJ (X)
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Variational methods — the Jacobian, the malefactor

We need to calculate the gradient (Jacobian)

dJ (x,u) _ OX dJ(x,u) ]’
du ou du

Derivatives with respect to Derivatives with respect to adjoint
the parameters the state variables

* U may easily represent 100s of variables, but worse
* X may represent millions of variables, for each time step!

* Options to calculate the Jacobian:
* Numerical differentiation: computationally not feasible in our case

« Adjoint method: computationally efficient, but

&  requires significant programming efforts
TU Delft Y
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Challenges
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The TOPAZ model system

TOPAZ3: Atlantic and Arctic s
= HYCOM + EVP sea-ice model »gpf”“’ "
= 11- 16 km horizontal resolution (800 x 880) .~
= 22 hybrid layers &
EnkF /
= 100 members /
Observations /
= Sea Level Anomalies (CLS) 4
= Sea Surface Temperatures (NOAA) | - .
= Sea Ice Concentr|(AMSR, NSIDC) \\
= Sea ice drift (CERSAT) [asynchrono‘t?sal

= Argo T/S profiles (Coriolis) \' _

Runs weekly, 10 days forecasts
= ECMWTF forcing
NERSE .Exploited at met.no since March 2008

A tf
0 R B . R
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Satellite Data e

SLA, SST, Ice,

In Situ Data Data

—

Sea-lce
model Atlantic and Arctic
EnKF model

Data assimilation
system

Uncertainty Ocean Hindcast User-targeted
estimates Primary production studies ocean forecasting

Analyze the ocean circulation, sea-ice and biogeochemistry.
Provide real-time forecasts to the general public and industrial users
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Case studies — Highly nonlinear dynamics

2D variables (400 x 600 grid
cells)

-Barotropicpressure
-u/v velocity

-ice concentration
-ice thickness

3D variables (400 x 600 x 22 grid
cells)

-Temperature
-salinity

-u/v current
-layer thickness

TOTAL: 27.600.000 variables

Sea level anomalies (satellite, radar
altimeters)

-Non linear function of state variables
-100.000 observations every week

Sea-surface temperature (satellite,
optical)

- 8.000 observations every week

Sea-ice concentrations (satellite,
microwave)

- 40.000 observations every week

TOTAL: 148.000 measurements



An unified numerical weather forecasting operational system

Global Envitonmental Multiscale (GEM) Forecasting & Modelling
Systern
2011-2021

Middle Atmosphere Model Multi- Seasonal Forecast
&
Data assimilation
Monthly Forecast
Medium-range Forecast
(240 h
&
Data assimilation

‘ Ensemble Forecast
Regional and
Mesoscale Forecast
(24 .48 h, 10-15 kin )
&
Data assimilation

b
P
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C
E
5
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L
i

Regional Clhimate Model

Linited Artea Model
Micro- O-24h
metearology &
(10m 1k Data assimiaton

TIME SCALE

Canadian Meteorological Center, Weather prediction Division



Reservoir management workflow benchmark study
Peters et al., 2010, SPE J.

Q) » Synthetic case
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TUDelft » 44500 active grid cells with

WIRIS 4 values in each grid
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Reservoir management workflow benchmark study
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Estimation of different properties
Non-linear dynamics

Two distinct data types

Different simulators used by the
participants
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realized NPV (10%$)

standard
Successes: 4

Use of the EnKF as a history matching 4.65}
method was a common factor among
the best performers
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Updating models and production
strategies more frequently improves
the forecast of the final realized NPV.
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Seismic History Matching of Fluid Fronts
Trani et al. 2011, submitted to SPE Journal

» Synthetic case based on
Brugge field

» 20000 active grid cells with 2
values in each grid cell

*14 years of production

« 17 producers and 10
injectors

* are-parameterization of
time-lapse seismic into front
arrivals times (no extra
inversion required)

What is the added values of a new parameterization for time —lapse seismic?



Seismic History Matching of Fluid Fronts

» Non-linear dynamics

»  Two distinct data types

)  MORES simulator

Successes:

) The new re-parameterization
IS a success

> No extra inversion required

) Improved match for both
production and seismic data
=> improved forecast skills




Roswinkel Field Case
Joint HM subsidence and well data

Wilschut et al., SPE 141690

Heavily faulted gas field in NE-
Netherlands

35 possible compartments

GIIP 24.6 bcm

Production period 1980-2005

9 leveling subsidence campaigns
Max. subsidence 17 cm

Can we identify compartmentalization based on both subsidence and
production data?



Roswinkel Field Case
Joint HM subsidence and well data

550
» Estimation of fault

properties

* Moderately non-linear B

» Two distinct data types £ 540

« Simulator: IMEX coupled ]
with geomechanical model

545
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53855 260 265
sSuccesses:

» Added value of second data
type

 EnKF can also be used as
diagnostic tool
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Infrared remote sensing of atmospheric composition and air
quality: towards operational applications

IASI/METOP - Operational applications (GMES)

Pollution forecast

Fire detection Volcanic plumes

Ozone alerts Long-range pollution Aviation thread
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W

IMG observation
April 4, 1997, South Pacific .
I | I | I | l | I n l L] l n l L] '

0o

: ) Level 1
Retrieval algorithm v

Data
assimilation

Level 3 or 4




Conclusions

* Combination between the model and measurements
e Estimation and forecast tool under uncertainties.
* |t is very sensitive to the right description of the uncertainties

» Data assimilation is a successful recipe/solution for a lot of different
types of applications
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