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Why study
sun-climate connection?

For at least two reasons:

scientific and practical



1. Scientific - because itis interesting
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We need to
understand:

how the Sun works;

how the Earth’s
system works;

and the whole
chain of processes
from the Sun to the
Earth



2. Practical - because it is important
for our everyday life
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Controversy about the relative impact of
solar and human induced climate change
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Temperature correlates with solar activity, not with CO,

“Low level of scientific understanding of the
solar influence” (IPCC, IV AR)




Scenarios for GHG emissions from 2000 to 2100
(in the absence of additional climate policies) and
projections of surface temperatures
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"Unmitigated climate change would, in the long term, be
likelyto exceed the capacity of natural, managed and
human systems to adapt”



Measures to mitigate climate change:
Reduction of emissions = retarded economical growth
Renewable energy sources = increased cost of energy
Biofuels = increased cost of food
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Must we try to
mitigate climate
changes...

...or shall we just
adapt to them?
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Differences between weather and climate

Weather

Climate

It is an instantaneous atmospheric
condition.

It is an average atmospheric condition.

It can change rapidly, within even less
than an hour.

It sustains over a period of 30 years, as
defined by World Meteorological
Organization (WMO).

It prevails over a small area.

It prevails over a large region.

It has only limited predictability.

It is almost constant.

It depends primarily on density,
temperature and moisture differences
between one place and another.

It depends on latitude, distance to the
sea, vegetation, presence or absence
of mountains, and other geographical
factors.

“Climate is what you expect, weather is what you get”
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Earth radiation budget
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e The Earth gets more
energy per unit area
in the tropics than
at higher latitudes

e Latitudinal distribution

of incoming solar
(shortwave) and
outgoing (longwave)
terrestrial radiation



Atmospheric circulation — the system of the large-
scale atmospheric motions over the Earth

due to the differential heating

of the Earth’s surface /g‘g
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But the Earth does rotate:

Tropospheric

polar vortex subpolar lows

POLAR mid-latitude cyclones

EEMREL Coriolis force

. subtropical high, jet stream, waves
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/ / HADLEY

CENCEZONE 0° equatorial low

Y
-
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Tropospheric mid-latitude cyclones
polar vortex

Coriolis force

subtropical high, jet stream, waves

Coriolis force



North Atlantic Oscillation (NAO) — sea-saw variation between
atmospheric centers of action in middle and high northern
latitudes determining the large-scale atmospheric circulation
and temperature over most of NH

S F?T-BMIE ) = Temperaiune anomalies [degress C)
iy D & e momales e

Sea leved préassune anomalies (mb)

Temperature anomalies (degrees C)

T




NAO and sunspot number
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Correlated with solar activity: positive and negative
correlation in consecutive secular solar cycles




El Nino/Southern Oscillation
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Long-term
vaviations of
solar activity
and El Nino

El Niho frequency
and intensity
decrease with
increasing solar
activity both on
centennial time-
scales
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Quasibiennial oscillations

Krakatau eruption (1883): the dust circled
the Earth in 13 days from east to west
= “Krakatau Easterlies”

Ilustririe Aéronautische Mitiheilungen
Hafy 4

¢~ o In 1908 Berson launched
observational balloons
above Lake Victoria in Africa
and at 15 km they were
carried from west to east
= “Berson Westerlies”
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The correlation between sunspot number
and meteorological parameters
depends on the phase of QBO

30 hPa
geopotential
height over
the North
pole as a
function of
solar UV
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Atmospheric waves
Planetary (Rossby) waves

Tropospheric
polar vortex

The jet streams meander
about their average
position due to the
latitudinal variation of the
Coriolis force and
orography



Stratospheric polar vortex

In winter:

1/28/66 850K PV

 No sunlight to heat the ozone
over the pole

e The stratosphere cools

 Thermal disbalance with the
lower latitude stratosphere

 Pressure difference (+
Coriolis force) = strong jet
stream (“Polar jet”)

e Contained within it —a strong
vortex (“Polar vortex”)
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Importance and relation with climate

cold stratosphere warm stratosphere
e strong stratospheric  weak stratospheric
vortex vortex
e strong tropospheric vortex « weak tropospheric vortex
e strong and straight polar e weak and meandering
jet polar jet
e unsettled, mild and wet e persistent anomalies, hot
weather and cold waves

More and longer blocking events for solar minima (Barriopedro et al., 2008)




Combined QBO/solar influence on

the polar votex
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solar dynamo

transforms the solar
poloidal field
(sunspot min)

into toroidal field
(sunspot max)

and back into
poloidal field with
the opposite
magnetic polarity
(next sunspot min)




Possible mechanisms of

solar influence on climate change

Solar activity

| e R

I
I
Solar irradiance Solar wind | Solar/heliospheric
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Two types of solar magnetic fields:

toroidal

21994 Encyclopaedia Britannica, Inc.

Different solar cycle variations
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And possibly different influence on the Earth’s system



Two types of solar magnetic fields:
toroidal



Solar toroidal field

Sunspots
are manifestation of the
solar toroidal field

400 Years of Sunspot Observations
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Often used as a measure of solar activity
because of their long record, but they are
manifestation of ONLY the toroidal field.




Relared geoeffective agents

Sunspots themselves have NO INFLUENCE
WHATSOEVER on the Earth system

But their number and surface area are proportional to
the number and intensity of solar flares and CME’s

1997/04/07
- 1521

also manifestation of the solar toroidal field
Flares ionize the upper atmosphere
CMEs cause the strongest geomagnetic storms



sunspot number and area - proportional
to solar irradiance
important for climate
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Total Solar Irradiance (TSl) increases by ~0.1% at sunspot maximum:
the more dark sunspots there are on the Sun, the brighter it gets.



MECHANISM AND MODELS OF
IRRADIANCE VARIATION

Changes in the surface
structure due to the
evolution of the
photospheric magnetic field

Irradiance = Quiet Sun brightness

+ darkening due to sunspots

+ brightening due to faculae and the
etwork:

S, (D)= S_.+ AS_(1)+ AS () + AS ()

Krivova, COST ES1005 (2011)




More sunspots = stronger toroidal field
= brighter faculae

M Irradionce But bright faculae “outnumber”
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Reconstruction of total solar
irradiance (TSI) from sunspot numbers
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TSIl varies by ~ 0.1% in the 11-year sunspot cycle
and by ~0.6% since 1700



Another approach — using the solar cycle
length (Hoyt and Schatten, 1993)

Combined Solar Irradiance Model
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Combined Solar Irradiance Model
and Earth surface temperatures
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Physical basis: solar cycle length ~ speed of
meridional circulation ~ solar magnetic fields



Different reconstructions
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TS| effect on climate: Possible
mechanisms

1. Direct effect: AT = A\*

— variation in the incoming radiation at the top of
the atmosphere

A — climate sensitivity to variations in TSI
Estimation:

in the 11-year cycle
A=0.3-1.0K(Wm—2)1
— ATSI=0.017 K (for A=0.5-IPCC) too small!

= the mechanism is more complucated




2. Bottom-up mechanism

during Smax on
cloud-free subtropical oceans
= increased evaporation from tropical
oceans = decreased SST there
—increased trade winds and increased
moisture carried to intertropical
CONVE :nce zone
= intensified precipitation and upward
vertical motions into precipitation zones
= stronger Hadley and Walker
circulations
= stronger subsidence in subtropics
= further reduced clouds and further
increased solar forcing... and so on

van Loon, Meehl, Cubasch




Solar spectral irradance
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spectral
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and near infrared irradiance reach the Earth’s
surface and troposphere, UV is absorbed in the

troposphere and stratosphere, EUV and XUV don’t reach
below the thermosphere



Much more variability at shorter
wavelengths

,_Spectral Solar Irradiance and Solar Cycle Variability
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Long-term variations

Maunder Minimum Dalton Minimum Modern Moximum

Lean et al (2001)

Difference in spectral irradionce (mW/m2,/nm) [<242nm]

|
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Spectral differences
2004-2007
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Necessary to revise
the model!
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The models are based on the number and area of
sunspots and don’t account for magnetic field

Penn and Livingston (2010)

Umbral Magnetic Field
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Secular decrease in the sunspot

magnetic field

the mean field strength may reach
the threshold 1500 G value in 2022

Field Strength, G

Pevtsov et al. (2011)
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SSI effect on climate: Possible
mechanism

olar Jet
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Two types of solar magnetic fields:
poloidal



21994 Encyclopaedia Britannica, Inc.

Solar poloidal field

Its manifestation are the
solar coronal holes —
areas of lower
temperature

= darker in X-rays

Areas of OPEN magnetic field lines
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Sunspot min:
large polar
coronal holes;
no coronal holes
at low latitudes
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Sunspo max:
small scattered
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coronal hole at all
latitudes
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Related geoeffective agents

High speed solar wind streams (>500 km/s)

Solar Wind
Speed
(km/s)

Qutward IMF Inward IMF

Cause recurrent geomagnetic storms



Geomagnetic activity
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Modulation of galactic cosmic rays

e Galactic Cosmic Rays -
coming from outside the
solar system, remnants
of supernova stars

e |Interact with
atmospheric constituents
to produce
radionucleides

e The open solar flux
modulates the cosmic
rays flux and = the
abundance of
radionucleades




Reconstruction of the open flux back to 1700
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Correlation w

global temperature
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Geomagnetic activity
caused mainly by non-
sunspot-related, or
poloidal solar field-
related solar activity is
better correlated to
global surface air
temperature than
sunspot number-
related, or toroidal
solar field-related solar
activity



Correlation between galactic
cosmic rays and low clouds
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Possible mechanisms

1) Effects of energetic
particle precipitation on
nitric oxide

 Produce NOx by ionizaton &
dissociation

 Participates in the catalytic
destruction of ozone.

- e Randell, ESSE, 2006




The Indirect EPP Effect on Ozone

Air from the upper
atmosphere (which

NOx > 50 km contains NOx)

001 . ‘ w  descends in the dark
o SR @ Mo | polar vortex where it
| OBy === s confined &
| (SPN e~ 1 isolated from other

ol PO R AN, — 60 latitudes which are
| 'l‘mp‘:c;: Waves: | sun | it‘
. gravity 140
10 « inertia gravity
- Rossby-geavity ., Increased odd
- . NS ) nitrogen lifetime and
. Tropopause 165 1 53¢ ('umccli«‘vlu W ; catalytical
SP 60°S  30°S  EQ N 60°N NP destruction of ozone

Kozyra, IS5C 2006



Possible mechanisms

2) Open flux modulation of
galactic cosmic rays



Effects of Galactic Cosmic Rays on
Weather and Climate

- Evidences from the past:

Solar forcing of climate Heliosphere

- How to identify the cosmic-ray effect

- Influence of 27-day solar rotations
on clouds

©Hayashi



Evidence from the past: Solar activity and climate variations
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Galactic arms and
Earth’s climate

Colder climate when in
the galactic arm

sea-surface temperature anomaly (deg.)
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GCR ionization aids particle formation

HoS04 UCN
vapor condensation 5 cluster
— " B nucleation
H20 evaporation
i subcritical
embryos
cpeoa\ag@o“ (<1-2 nm)
cloud droplets
CN CCN
& ) condensation >o activation
a & coagulation
critical {~100 nm)
embryos (~10-20 pm)
(~1-2 nm)

Carslaw et al. (2002)



Cosmic rays |

l ,—-|Cloud droplets |
Atmospheric ion \
concentrations |

Cloud brightness /
\ cover |
lon-induced \
nucleation |
Global
\ temperature 1

Aerosols and
CCN | J

Fig. 1. The ion-aerosol clear-sky mechanism showing how cloud
cover could be reduced and temperature could be increased from a
decrease 1n cosmic rays.

Snow-Kropla et al, 2011



How can we quantitatively evaluate the relative
role of the Sun and the anthropogenic
greenhouse gases for global warming?

(How we should NOT do it)

Two approaches:

Modes simulations

Know what factors
affect climate and how

Input them in climate
simulation models

Vary their amplitudes
Compare the response

Statistics

* Find out how Sun affected
climate in the past

e Calculate for the present
levels of solar activity

e Compare with the
observed climate change



Example — simulation
difference present day - Maunder minimum
Rind et al. (2004)

Assume that:

o 2 factors affect climate solar irradiance
and greenhouse gases

 We know how they affect it

e The same greenhouse gases,
different solar irradiance

-0.55°C

e The same solar irradiance,
different greenhouse gases

-1.11°C

= The anthropogenic forcing is 2
times larger




Too many factors affect climate, and we
don’t yet know how
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Example — statistics
Krivova and Solanki (2004)

= Sun cannot have been responsible for more
than 30% of the recent rise in temperature
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conclusion

We are still far from evaluating
the role of solar activity in
climate change



