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In the present paper a rigorous procedure is applied for estimating the statistical significance of the climatic 
signal in sea level pressure field (SLP) in the 21st century in comparison with the 20th century. The 
investigation arose from the need to determine the areas with statistically significant climatic signal in the SLP 
field. Selected predictors of SLP field together with other predictors such as precipitation help to estimate 
hydrological changes occurring in the Danube basin in the 21st century, especially for spring time. In the first 
part, the performance of four atmosphere-ocean general circulation models (CNRM, ECHAM5-MPI, EGMAM 
and IPSL) to simulate daily sea level pressure data from European Reanalysis (ERA-40) during spring over 
region (30°-65°N; 0°-40°E) is analysed by spatial correlation. We are interested in pressure changes in this 
area, because in this region there are predictors under different indices for the behavior of hydrological 
variables for the Danube basin. A 42-year period (1958–1999) from ERA-40 was chosen for testing. After 
applying a bias correction, the climatic signal for two periods of 42 years within the 21st century (2009–2050 
and 2051–2092) was estimated. The scenario A1B, stream 1, used in the researches made in the ENSEMBLES 
project was considered. The climatic signal was estimated first by means of the t test. Because t test’s application has 
given nonconcludent results, a Z test was applied too. Variances used to calculate the Z test were estimated 
using the parameters of an autoregressive model (AR). The parameters of an AR model, by means of the daily 
sea level pressure was fitted, were estimated on the basis of the concept of the maximum entropy. The 
advantages of using the Z test in comparison with the t test are described in detail. For each of the two periods 
during the 21st century, the areas where the climate signal is statistically significant were determined. The most 
extended zones with significant climatic signal are found in case of two models, CNRM and ECHAM5-MPI.  
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1. INTRODUCTION 

It is well known that Atmosphere-Ocean 
General Circulation Models (AOGCMs) are 
recommended in hydrological impact studies as 
they take into account the interaction between 
the ocean and the atmospheric circulation at 
large scale. The disadvantage of their use is the 
coarse spatial resolution of the output of these 
models. This is the reason why downscaling 
procedures are necessary for obtaining local 
scale information. 

It is very important to determine the areas 
where the used climatic change model gives 
significant information concerning the change of 
the hydro-meteorological variable of interest in a 
certain study.  

There are many investigations regarding the 
detection of the climatic signal, more or less 

sophisticated, depending on the intended 
purpose. Among the investigations we mention 
the estimation of the signal-to-noise ratio 
(Hayashi, 1982), or the optimal fingerprint 
method proposed by Hasselmann (1979) and 
developed in several papers among which Santer 
et al. (1994) and Hegel et al. (1996). In Cubasch 
et al. (2001), the notion of “signal versus noise” 
is discussed, where the signal represents the 
deterministic part of a climatic change and the 
noise, the random part related to the natural 
variability. The signal-to-noise ratio compares 
the strength of the climate change signal to this 
variability noise. Cubasch et al. (2001) also 
show that the signal in the temperature field is 
about four times bigger than in the precipitation 
field. Trenberth (1984) defines the signal-to-
noise ratio according to the cross correlation 
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coefficients of the variables emphasizing the 
North Atlantic Oscillation (NAO) index.  

In Ghil et al. (2011) several methods for 
estimating the signal in the climatic time series 
are reviewed, including spectral analysis and 
several applications are presented, such as the El 
Niño-Southern Oscillation (ENSO) phenomenon 
which is considered the most prominent signal of 
seasonal-to-interannual climate variability.  

Yang et al. (2010) present the advantages and 
disadvantages of using the general circulation 
models (GCMs) as compared to the regional 
climate models (RCMs), concluding that a 
statistical robust downscaling procedure is 
preferable to using the dynamic downscaling by 
RCMs. The authors apply a statistical downscaling 
procedure to estimate the precipitation over the 
Rhine River using predictors from a general 
circulation model. Generally, the choice of the 
predictors is done according to the season and 
the considered region (Huth, 1996, 1999).  

Mareş et al. (2008) revealed the need for a 
rigorous determination of the changes expected 
in the 21st century in the field of pressure, 
because the sea level pressure (SLP) as 
expressed by means of atmospheric indices is an 
important predictor for both precipitation and the 
Danube river flow. Mareş et al. (2002) found 
that the North Atlantic Oscillation  index during 
winter influences the moisture state during 
summer over the Danube basin, quantified by 
Palmer Drought Severity Index (PDSI) of Briffa 
et al. (1994). Rimbu et al. (2002) showed that 
there is an out-of-phase relationship between the 
time series of the Danube river discharge 
anomalies and the NAO index. Bierkens and van 
Beek (2009) evaluated the predictive skill of the 
discharges in summer and winter seasons in 
Europe, focusing on the rivers Danube and 
Volga, which are the largest rivers in Europe and 
pass through various climate zones. Together 
with other predictors, the authors consider the 
NAO index a good candidate for seasonal 
prediction of discharge. In Mareş et al. (2009a), 
the NAO index and the first ten principal 
components (PCs) of the decomposition in 
Multivariate Empirical Orthogonal Functions 
(MEOF) of three atmospheric fields (sea level 
pressure, 500 hPa, and 500–1000 hPa thickness) 

over the Atlantic-European region (ERA-40) 
have been introduced as covariates in the 
modeling of extreme events in the Lower 
Danube basin discharge. The most significant 
results are obtained by incorporating the first 10 
PCs of MEOF in location parameter of 
Generalized Extreme Value (GEV) distribution 
with a month before the month of the discharge 
level. As shown in Maraun et al. (2010) too, 
where the behavior of a climatic variable is 
estimated by the statistical downscaling method, 
it is important, in the first place, to assess the 
global or regional climatic models performance 
to reproduce the variable that is called predictor 
for the region of interest.  

Therefore, four AOGCMs, namely ECHAM5-
MPI, CNRM, EGMAM and IPSL were considered.  

The paper is organized as follows: in Section 
2 data and methodology are presented, Section 3 
comprises the analysis of the pressure field at 
sea level. The testing of the models performance 
to reproduce the SLP from ERA-40 during 
spring, for the reference period (1958–1999), 
using spatial correlations, is presented in 
paragraph 3.1 and the SLP bias correction 
procedure concerning the reference period and 
the obtained results are presented in paragraph 
3.2. In Section 4 the areas where a statistical 
significant climatic signal in SLP field existed 
for two intervals in the 21st century are presented. 
The conclusions are given in Section 5.  

2. DATA AND METHODOLOGY 

The present study combines a procedure of 
model bias with a rigorous method to estimate 
the statistical significance of a climate signal in 
the 21st century in several AOGCMs without 
aiming to investigate causes of this signal. 

First of all, before applying the bias 
procedure, we compared the simulated pressure 
by the four AOGCMs with the ERA-40 data by 
spatial correlation analysis. ERA-40 is a re-
analysis of meteorological observations from 
September 1957 to August 2002 produced by the 
European Centre for Medium-Range Weather 
Forecasts (ECMWF) in collaboration with many 
institutions (Uppala et al., 2005).  
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After the bias correction of the data simulated 
for the considered sector (30°–65°N; 0°–40°E), 
an analysis of the climatic signal was done. As 
the t test could not be applied, because of data 
structure, we used the Z test. The Z test is more 
powerful and more rigorous than the t test, with 
the advantage of using a larger number of data 
for assessing the climatic signal. Before applying 
the Z test, a modeling as autoregressive 
processes was done both for the ERA-40 values 
of the pressure and for those simulated by the 
four models for A1B emission scenario, for two 
periods representative for the first and the 
second half of the 21st century. The AR model 
parameters were estimated by means of the 
maximum entropy method. 

Our procedure generally follows the method 
described by Katz (1982). That author has 
applied this test to estimate the climatic signal in 
simulated daily field temperatures in winter and 
summer from the North American continental 
area and showed the performance of this 
procedure compared with others that highlight 
the climate signal. The region of interest in the 
present investigation is the European area (30°–
65°N; 0°–40°E). This region was found in Mareş 
et al. (2008, 2011) optimal for precipitation 
evaluation in Danube Middle and Lower basin 
with pressure predictors under MEOF components 
or atmospheric indices, in comparison with a 
more extended region. Also, the highest 
discharges for the lower Danube basin were 
registered in the spring months (March, April, 
May – MAM). 

The four models, CNRM, ECHAM5-MPI, 
EGMAM and IPSL, post-processed in this study, 
are atmosphere-ocean coupled models. The 
scenario A1B, stream 1 used in the researches 
made in ENSEMBLES project (Van der Linden 
and Mitchell, 2009) was considered. A1B is a 
moderate emissions scenario in which atmospheric 
greenhouse gas concentrations reach about 
850 ppm CO2-equivalent by 2100 (IPCC 2007).  

Because the models have different spatial and 
temporal resolutions (calendar month or month 
with 30 day each), for homogeneity, the SLP 
field over the European region considered was 
interpolated at a common regular grid with a 
resolution of 2.5° longitude x 2.5° latitude and 
all month for all models were considered to have 

30 days. The resolution of 2.5° x 2.5° was 
chosen in order to be compatible with the 
pressure field in ERA-40. As it is mentioned in 
Chapman and Walsh (2007), Re-Analysis (ERA-
40) directly assimilates observed air temperature 
and SLP observations into the reanalysis 
product. The ERA-40 is one of the most 
consistent and accurate gridded representations 
of these variables available, and therefore, is a 
logical choice for observational analyses against 
which we validate the model biases SLP. 

As reference for the 20th century, a period of 
42 years, 1958-1999, was chosen. We test the 
performance of the four global models with the 
help of the spatial correlation coefficient 
between SLP from ERA-40 and from control 
experiments for the period 1958–1999, as well 
as with the calculation of the root-mean-square 
error (RMSE) and of the explained spatial 
variance. In the analysis, the multiannual mean 
field is considered for the spring season on the 
mentioned sector. 

3. ANALYSIS OF THE PRESSURE FIELD 
AT SEA LEVEL IN THE 20th CENTURY 

(1958–1999) 

3.1. TESTING THE MODEL PERFORMANCE 
TO REPRODUCE ERA-40 

In order to find the significance level of the 
correlation coefficient, we have to take into 
account the fact that the SLP values present a 
serial correlation. In this case, we have to 
estimate the equivalent sample size (ESS). There 
are several methods to find the statistical 
significance of correlations among the series 
pairs presenting serial correlations. A part of 
these methods are presented in Thiebaux and 
Zwiers (1984), Zwiers and Storch (1995), 
Ebisuzaki (1997). Beersma and Buishand (1999) 
apply a jackknife method by which a statistics of 
interest is recalculated repeatedly after omitting 
a part of the original data. 

Also the correlated time series must have a 
Gaussian distribution. Even if the daily pressure 
values during spring deviate from the Gaussian 
distribution, we have very large data series and, 
according to the central limit theory (Panofsky 
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and Brier, 1965), the distribution of these variables 
tend to be a normal one. As the SLP values have 
a great persistence, they may be modeled by an 
autoregressive model of first order – AR (1). In 
this case, we follow the procedure described by 
Zwiers and Storch (1995) for the ESS estimation. 
Thus, a pooled estimated value of the lag-1 
correlation coefficient between two time series is:  
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where n and m represent the length of the two 
analyzed series. 

For n large, the ESS, denoted now as ne, is 
estimated as follows: 
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We apply (1) and (2) in order to find the ESS 
corresponding to the values n = m = 255, 
defining the total number of points of the spring 
mean multiannual field SLP. In Table 1, the r1 
values, spatial correlation coefficients R between 
the simulated series for each of the four GCMs 

and SLP from ERA-40, and ne values are 
presented. Here, ne is the effective number that 
we have to take into consideration for the sample 
length (instead of 255), for testing the statistical 
significance. The spatial correlations coefficients 
(R) are obtained between the pressure of the 
ERA-40 data and of the pressure values 
simulated by each of the 4 models, for the 
averages over the period 1958–1999. The 
significance levels correspond to the degree of 
freedom ne-2. We note that the effective number ne 
is significantly lower than the initial data volume n 
and this diminution depends on the persistence 
degree of each pair of correlated series. 

The root-mean-square errors (RMSE) were 
calculated in accordance with the relation: 
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where: 
Ps

k and PRe
k represent the simulated pressure 

and respectively pressure from the ERA-40 
reanalysis for the reference period 1958–1999 in 
the 255 points of the mentioned European sector. 
While the correlation coefficient is immune to 
magnitude errors, RMSE is a measure sensitive 
to magnitude errors. 

Table 1 

Capacity of models to simulate the mean pressure at sea level during spring,  
tested by means of the spatial correlation analysis 

 Model  R r1 ne Significant level RMSE E

CNRM 0.471 0.838 22 ~98% 1.816 0.059

ECHAM5-MPI 0.664 0.774 32 >99% 1.107 0.339

EGMAM 0.528 0.881 16 95-98% 1.870 -0.473

IPSL 0.314 0.910 12 <90% 2.857 -3.375

 
Another measure of the models ability to 

reproduce the ERA-40 is the explained spatial 
variance E. If we note with D the difference 
between the simulated and ERA-40 long term 
mean pressure and with σ2

D the spatial variance 
of D and with σRe

2
 the explaining spatial variance 

of the ERA-40 field, then, according to van 

Ulden and van Oldenborgh (2006), E has the 
following expression: 

 E=1-σD
2/σRe

2  (4) 

As van Ulden and van Oldenborgh (2006) 
show, E represents a better measurement than the 
correlation coefficient because it tests the pressure 
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amplitude variations. In fact, both RMSE and E 
give the same indications, fact also proved by 
their values in Table 1. Analyzing these measures, 
one may note that the smaller RMSE value is 
given by the ECHAM5-MPI model; E positive 
value nearest to 1 is also given by ECHAM5-
MPI. At the same time, the highest statistical 
significance level is observed for the ECHAM5-
MPI model, a fact that makes us conclude that 
this model is capable to best reproduce the mean 
pressure. 

The CNRM model, even if it has the 
correlation coefficient smaller than EGMAM, 
taking into account the RMSE values, of E and 
of the significance levels, may be considered on 
the second place from the point of view of the 
performance of reproducing the mean pressure. 
Therefore, the ranking of the models by the 
ability to reproduce the mean pressure during 
spring, in the sector 30°–65°N; 0°–40°E, having 
in view all the values from Table 1, is: 
ECHAM5-MPI, CNRM, EGMAM and IPSL. 
Dobler et al. (2011) shows that the ECHAM5-
MPI is one of the most powerful general 
circulation models and show why it is selected in 
the process of downscaling in the Danube and 
Brahmaputra basins. Similar results were also 
obtained by Kjellstrom et al. (2011) who 
estimated the explicative variance for 
determining the SLP performance with a 
regional climate model. This model belongs to 
Rossby Center from Sweden and there were 
analysed the results for Europe obtained of an 
ensemble of 16 simulations for 1961–2100. The 
regional climate model uses the boundary 
conditions of 7 general circulation models. Three 
of the general circulation models used by 
Kjellstrom et al. (2011), namely CNRM, 
ECHAM5-MPI (run3) and IPSL are found in the 
present investigation. They found that the 
regional climate model with the forcing CNRM 
has a better performance to simulate pressure at 
sea level in spring for the reference period 1961-
1990, as compared to the ECHAM5-MPI or 
IPSL forcing. Some differences between the 
results obtained in the present study and those of 
Kjellstrom et al. (2011) have several causes, 
mainly because of the used simulation models 
(RCMs and, respectively, GCMs) and of the 
different reference periods. 

3.2. BIAS CORRECTION OF PRESSURE 

Because every climatic model has certain 
peculiarities concerning the climate variability 
simulation, a bias analysis is necessary. There 
are several methods of correction of the models 
according to the goal had in view. Of the most 
recent procedures of application of the corrections, 
we mention those described in Buishand and 
Lenderink (2004), Salathe (2004), Lenderink et 
al. (2007), Hagemann et al. (2009), Van der 
Linden and Mitchell (2009), Terink et al. (2010), 
Hamlet et al. (2010), Piani et al. (2010). 
Lenderink et al. (2007) apply two different bias 
methods of the models to simulate Rhine 
discharges in the future climate. One of them, 
known as delta approach, uses differences 
between future climate conditions and simulated 
current added to observation time series of 
climate variables. We apply the so called direct 
method, namely the scenarios are corrected 
according to the control simulations bias. As in 
this study we are interested in changes produced 
in the daily pressure values, we apply a method 
having in view the multiannual daily averages.  

The bias for the simulated pressure values by 
each of the four models was calculated as 
follows: 
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where, k = l,..., 255 grid point, m =1,...,4 
models; N = number of years; j = 1,...,90 the 
number of days of the spring months (March, 
April, May); Pc

km and PRe
k simulated and 

respectively ERA-40 pressure values for the 
control period. 

The simulated pressure values for the control 
period (20th century) are corrected as follows: 
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With the help of the bias from equation (5), 
the scenarios are also corrected: 
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We present an example of the bias, for the 
point (47.5°N; 20°E) in Fig. 1. This point is not 
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selected at random, it was found as a significant 
point in the correlative analysis between SLP 
and the Danube discharge at Orşova, in the SW 
of Romania (Huebener et al., 2007; Mareş et al., 
2009b). Figure 1 shows that all the models have 
a different time depending bias in the region of 
interest for the discharges in the lower Danube 
basin. All models have in common the fact that 
in March and the beginning of April they present 
a scattered bias with positive values for 
EGMAM and IPSL and general negative for 
CNRM and ECHAM5-MPI. One can note that in 
the first half of the spring season model biases 
are larger, in absolute value exceeding 4 hPa. For 
the point considered as example in Fig. 1, the 
smallest biases are in the case of CNRM model. 

In Fig. 2 the averages over 90 days of the bias 
corrections for each of the grid points in the 
region considered in this study are shown. 
Spatial distribution of these biases are different, 
depending on the model. The smallest errors in 
absolute values are found around latitudes 
45–50°N. Generally over the analyzed European  

 

region, ECHAM5-MPI model presents the 
lowest values of biases. Our results are in 
agreement with the Chapman and Walsh (2007) 
findings for the European region selected in the 
present study. Demuzere et al. (2009) show that 
ECHAM5-MPI model is capable of reproducing 
circulation pattern (Lamb weather type), above 
Western and Central Europe in the season from 
October to April in the period 1961–2000. 
Lorenzo et al. (2011) investigated the changes in 
the frequency of the different circulation types 
computed for the northwest Iberian Peninsula in 
the 21st century, by means of three different 
models used in the IPCC 4th assessment report. 
The above authors calculated for each grid point, 
the seasonal mean bias as the difference between 
the mean seasonal SLP values obtained from the 
CGCMs and those obtained from the NCEP/ 
NCAR data. They found that the ECHAM5 
model produces patterns of SLP that are the 
closest to the reanalysis data. Therefore, the 
ECHAM5 model can yield realistic SLP fields, 
resulting for both reanalyses ERA-40 and 
NCEP/NCAR data. 

Bias of spring daily SLP (47.6 N;20 E)
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Fig. 1 – The model bias for the daily sea level pressure during spring time, calculated as the difference 
between the mean of the daily multiannual of the control experiments and ERA-40 (1958–1999). 
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c) 
 
 

 
d) 

Fig. 2 – The spring average of the model biases: a) CNRM, b) ECHAM5_MPI, c) EGMAM, d) IPSL. 
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4. ANALYSIS OF THE CLIMATE SIGNAL IN THE 
DAILY SPRING PRESSURE FIELD IN THE 21st 
CENTURY AS COMPARED TO THE 20th CENTURY 

The goal of this analysis is to test if the 
difference among the simulated pressure values 
during spring by the four models in the two 
intervals of the 21st century and the reference 
period of the ERA-40 is statistically significant. 
As mentioned above, for the 20th century, both 
ERA-40 and simulations are considered for 42 
years (1958–1999). For the 21st century, we 
considered two periods of 42 years each, namely 
2009–2050 and 2051–2092. Among the non-
parameter tests, the t test has been used more 
frequently in testing statistical significance of 
climate changes. However, for this test application 
several conditions have to be fulfilled, among 
which the time independence of the climate 
variables, a condition hardly accomplished by 
the hydro-meteorological variables with serial 
correlations. This is the reason why many 
investigations tried to apply different procedures 
to accomplish the conditions imposed by the t 
test. A review of these procedures is found in 
Ebisuzaki (1997) and Wilks (1997). One of the 
procedures is the application of a modified t test, 
using in the place of the sample length an 
equivalent length (details about ESS were given 
in paragraph 3.1) by scaling the variances of t 
test calculation with this ESS. This scaling 
procedure is often named variance inflation 
factor (Wilks, 1997). According to Zwiers and 
Storch (1995), to test the hypothesis H0: μy = μx 
using the samples of size m and n for y and 
respectively x, we calculate:  
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where: 
y  and x are the sample means and s2 is the 

pooled sample variance. 
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For example, ESS for series x is estimated by: 
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ρxx(τ) is the correlation between the variable x at 
the t moment and the variable x at the t+τ 
moment: 
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where 2
xs  is the variance of sample x.  

To apply the test described by (8), the 
compared variables must be normally distributed, 
they must not present a serial correlation and the 
series have to be independent. Theoretically, the 
standard deviations must be equal to obtain a 
correct result of the t test. In applications, this 
condition is considered to be correct if standard 
deviations of the two series does not differ much 
(Laurmann and Gates, 1977). In the case of our 
analysis, standard deviations corresponding to 
the data from the ERA-40 and to simulated data 
differ slightly. We must verify the hypothesis 
that the time series pairs (averages spring SLP 
ERA-40 and corresponding simulated averages) 
used for the t test are independent. The 
correlation coefficients for 42 years between the 
seasonal averages of the ERA-40 and respectively 
of the simulated data are statistically insignificant. 
For 40 degrees of freedom, the critical threshold 
for a significance level of 90% is of 0.257, and 
for a significance level of 95% is of 0.304. In 
our case, for almost all of the 255 points, the 
statistical significance is lower than 90%, in 
many cases being close to zero. Consequently, 
the hypothesis that the series to which the t test 
is applied must be independent may be 
practically accepted. To solve the problem of the 
serial correlations of each series we must 
calculate ne both for the ERA-40 values and for 
each of the simulations for SLP given by the four 
models. In all cases, the effective length ne was 
much bigger than n initial (42 years). This may 
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be explained by the fact that serial correlations 
are negative at neighbor lags. So, the calculation 
of ESS for the data processed in this paper, that 
is the pressure mean values in spring, did not 
lead to the conclusion that the results of applying 
the t test would be trustworthy.  

Next, we adjusted by auto-regressive models 
the pressure spring daily time series of MAM 
and applied a Z test according to the procedure 
described by Katz (1982, 1992). As Zhao et al. 
(2001) show, this procedure has two main 
advantages as to the t test. First, it is based on a 
greater number of processed values because the 
daily values are used instead of the monthly or 
season ones, avoiding limited size sampling. The 
second advantage of the Z test is that it is not 
required that time series variances of the control 
and experiments be equal, or that the series be 
independent.  

An important problem which appears in AR 
modeling is the determination of the optimum 
order by which the respective time series is 
adjusted. There are several estimation procedures 
of this order, those better known being the 
Bayesian Information Criterion (BIC), introduced 
by Schwarz (1978), and the Akaike Information 
Criterion (AIC) – Akaike (1974). In Mareş and 
Mareş (2003), seven criteria including BIC and 
AIC, were tested, to determine their performances 
on simulated data with an AR model of order 2 
and 4. Of 100 achievements, the most performing 

criterion for determining order 2 or 4 for both 
small samples (up to 50) and bigger samples of 
100 was BIC. Having in view our former results, 
as well as those described by Katz (1982), in the 
determination of the AR model order in the 
present study, we applied BIC. We considered 
that each spring season of each year represents 
an achievement of an ensemble of 42 achievements 
(years), each with a length of 90 days.  

The steps followed in this paper to detect the 
changes in the pressure field during spring were 
the following. First, each time series with a 
length of 90 (months MAM) was modeled by an 
AR model of order 1 to 10. The AR model 
parameters were estimated on the basis of the 
maximum entropy concept (Burg, 1975, 1978; 
Ulrych and Bishop, 1975). The model order was 
determined by the BIC procedure for each of the 
42 years. The percentages of the occurrence of 
one of AR orders from 1 to 7, calculated for all 
the years and all the points, are presented in 
Table 2. In this table, ERA-40 represents SLP 
from the control period (1958–1999), and for 
each climate model, the index 1 or 2 represents 
the first interval of the 21st century (2009–2050) 
and, respectively, the second interval (2051–
2092). The biggest percentage for ERA-40 
correspond to an AR of first order, and for 
simulated values order 2 or 3, depending of the 
model, were obtained.  

Table 2 

The frequency (%) of an autoregressive process selection calculated for the 255 points defining SLP during spring season*  
Ord ERA-40 CNRM_1 CNRM_2 ECHAM5_1 ECHAM5_2 EGMAM_1 EGMAM_2 IPSL_1 IPSL_2

1 
2 
3 
4 
5 
6 
7 

51.6 
38.9 
8.6 
0.8 
0.2 
0.0 
0.0 

3.1 
37.7 
50.2 
6.6 
1.6 
0.6 
0.0 

1.9 
36.3 
50.9 
9.2 
0.9 
0.7 
0.0 

11.9
64.2 
20.4 
2.8 
0.6 
0.1 
0.0 

14.1
54.1 
28.5 
2.7 
0.5 
0.2 
0.1 

14.3
48.1 
30.7 
5.7 
0.8 
0.3 
0.1 

11.1
53.8 
29.2 
5.3 
0.3 
0.2 
0.0 

5.7 
44.8 
38.8 
9.7 
0.8 
0.1 
0.0 

4.7
42.7 
42.9 
8.1 
1.1 
0.5 
0.0 

* The determination of a single order corresponding to a point was done according to the maximum percentage obtained 
for the 42 years. 

In the second step, a single order p for each 
point according to the maximum achieved 
percentage is selected. Then, for each point, the 
achievements (pressure from ERA-40 and from 
models) are fit with an AR of a previously 
determined order, varying between 1 and 3. The 

percentages resulted from AR orders selection 
for the 255 points are presented in Table 3. From 
this table, one may see that in 71.4 % of the 
points the ERA-40 SLP is fit with an AR of order 
1, while for simulated SLP is necessary an AR 
model of order 2 and 3. 
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Between the two periods in the 21st century 
there are no remarkable differences in any one of 
the models. On the whole, SLP simulated time 
series for the 21st century are fitted in the most of 

points with an AR of order 2 in ECHAM5-MPI 
and EGMAM, with a model of order 3 in CNRM 
and with AR models both of order 2 and 3 for 
SLP simulated by IPSL. 

Table 3 

Selection of the order of an auto-regressive process with BIC,  
for the spring season daily pressure 

Ord ERA-40 CNRM_1 CNRM_2 ECHAM5-
MPI_1 

ECHAM5-
MPI_2 

EGMAM_1 EGMAM_2 IPSL_1 IPSL_2 

1 
2 
3 

71.4 
28.6 
0.0 

0.0 
33.7 
66.3 

0.0 
25.5 
74.5 

0.0 
96.1 
3.9 

0.0 
83.5 
16.5 

0.4 
75.7 
23.9 

0.0 
83.1 
16.9 

0.0 
60-.4 
39.6 

0.0 
52.9 
47.1 

The figures represent the selection frequencies (%) calculated for the 42 years and for all the points (255). 

For each point, we calculate the coefficients 
)( ppφ  for an AR of order p and an estimator 

σ2(p) of the white noise variance. σ2(p) is an 
unbiased estimator (Katz, 1982; Ulrych and 
Bishop, 1975) of the white noise variance for a 
process AR(p), as a function of the sample 
length, the model order and the variance 
corresponding to the process AR(p): 

 )(
1

)( 22 p
pn
np σ
−−

=σ
)

 (12) 

The recurrence relation for the white noise 
variance estimation )(2 pσ)  is given by: 

)1(})]([1{)( 222 −σφ−=σ ppp p
))

 p = 1, 2,.., M (13) 

Where M is the AR model order. 
Then, the mean of the ensemble of the 

coefficients AR (p) and of the corresponding 
variances (Chervin, 1980) for each point is 
determined. The approximate variance of time 
averages of an AR (p) process (according to 
Katz, 1982) when the sample size N is large (N 
in our case is 42 × 90 = 3780) is given by: 
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Let's consider the time average and the 

variance of the simulated values sX , )(2 sV
sp  and 

respectively ReX , (Re)2
RepV  of the ERA-40 

values, for a pressure defined in a grid point, 
under the null hypothesis ( ReXX s − = 0).  

In case N is very big, the distribution:  

 
(Re)])([ 221

Re

Repp

s

VsVN

XX
Z

s
+

−
=

−   (15) 

converges to a standard Gaussian distribution. 
In eq. (15), we considered the module of the 

means difference because we are not interested 
in the difference sign but in its statistical 
significance. Accordingly, the Z test values will 
be all positive. In Fig. 3 (a-h) the Z test 
geographical distribution for testing the changes 
in the pressure field during spring for the 21st 
century (A1B scenario) in comparison with the 
ERA-40 (1958–1999) is presented. According to 
Z test results, there are small areas where the 21st 
century changes in the pressure field are not 
significant. Comparing the models, the Z test 
shows that areas with significant statistical 
climate signal are similar for CNRM and 
ECHAM5-MPI. These models contour the most 
intense nucleus with great statistical significance 
in the West of the Mediterranean Sea. For 
EGMAM the intensity of the climate signal is 
situated in the North-East of Europe. Even 
though less intense as in the case of CNRM and 
ECHAM5-MPI models, the climate signal 
intensity for IPSL model is seen also in the 
South-West of the Mediterranean Sea. 
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a)  b)  

  

c)  d)  
  

e)  f)  
  

g)  h)  

Fig. 3 – Geographic distribution of Z test for testing the pressure field changes during spring for the 21st century (A1B 
scenario) in comparison with the ERA-40 (1958–1999) for four climate models: a-b) CNRM; c-d) ECHAM5-MPI; e-
f) EGMAM; g-h) IPSL. The left graphics represent the interval 2009–2050, and the right ones, 2051–2092. Z distribution 
values were normalized by the critical value z* = 1.96 corresponding to the 5% significance level (which corresponds to 
a 2.5% level for a one side test). In the areas where Z values are greater than 1 hPa, the climate changes in the pressure 
                                                  field for the 21st century are statistically significant. 
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The confidence interval for the mean changes 
is estimated as follows: 

(Re)])([ 221
2/Re Repps VsVNzXX

s
+±− −

α   (16) 

where zα/2 satisfies: 

 2/}{Pr 2/ α=> αzZ  (17) 

If we choose a confidence interval of 95% 
using a Gaussian approximation with α = 0.05 
then zα/2 =1.96. As Katz (1982) showed, while 
the null hypothesis test shows if a climate 
change took place or not, the confidence 
intervals give us information referring to the 
climate change dimension. 

In Table 4 we present the confidence interval 

calculated according to formula (16), only for Z 
test values corresponding to SLP defined in the 
point of interest for the Danube basin (47.5° N, 
20° E). One can observe that for this point, with 
the exception of EGMAM model which for both 
periods of the 21st century shows a slight 
pressure decrease, the other three models show a 
pressure growth at sea level. This is in accordance 
with Cubasch et al. (2001), who underlines that 
the most consistent characteristic of the pressure 
differences at sea level, obtained from mean 
ensemble, is of decrease for high latitude and of 
increase for mid latitudes. Although in Cubasch 
et al. (2001) the results for scenarios A2 and B2 
are presented, they are similar to those obtained 
in this study, where scenario A1B was used. 

Table 4 

Confidence intervals (95%) of the differences between the 21st century simulated and  
ERA-40 mean values pressure during spring in point 47.5° N, 20° E (unities: hPa) 

CNRM_1 CNRM_2 ECHAM5-
MPI_1 

ECHAM5-
MPI_2 

EGMAM_1 EGMAM_2 IPSL_1 IPSL_2 

0.49 ± 
0.12 

1.50 ± 
0.12 

0.98 ± 
0.13 

0.48 ± 
0.14 

-0.36 ± 
0.13 

-0.98 ± 0.13 0.18 ± 0.14 0.29 ± 
0.14 

 

The pressure changes at sea level over 
Europe differ not only according to the scenario, 
but also according to the analyzed period of the 
year, as well as to the used model characteristics. 
Meehl et al. (2006) analyzed the changes obtained 
for several climate variables for different 
scenario [using Intergovernmental Panel on 
Climate Change (IPCC) Special Report on 
Emissions Scenarios (SRES) A2, A1B and B1]. 
As concerns the magnitude of the annual mean 
SLP change, in A1B scenario, from 1980–1999 
to 2080–2099, this was for the Center and East 
Europe of about 0.8 hPa. The results were 
obtained with multimember ensemble simulations 
using the Community Climate System Model 
version 3 (CCSM3). In Beniston et al. (2007), 
the SLP changes dimension during winter 
simulated with regional climate models in the 
South of Europe was between -1 and 1 hPa, and 
the most significant changes were found in the 
North-West of Europe. The differences concern 
the time intervals 2071-2100 and 1961-1990, 
using scenario A2. 

5. CONCLUSIONS 

The investigations carried in the present 
study, referring to spring SLP over the European 
region (30°–65°N; 0°–40°E), aimed at: 

– The elimination of an important part of the 
uncertainty by bias correction of the pressure at 
sea level, simulated by four GCMs (CNRM, 
ECHAM5-MPI, EGMAM and IPSL); 

– Deriving the climatic signal in the sea level 
pressure field over the chosen region in Europe 
during the spring season (MAM), in the A1B 
emission scenario, in two periods within the 21st 
century (2009–2050 and, respectively 2051–
2092), based on ERA-40 data from the period 
1958–1999;  

– Determination of the areas with a statistical 
significant climate signal in SLP in the considered 
European region. 

The spatial distribution of the bias correction 
during spring season is different, depending on 
the model. The smallest errors in absolute values 
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of the averages over 90 days are found around 
latitudes 45–50° N.  

The Z test values have put in evidence the 
SLP climate signal simulated by the four models 
for A1B emission scenario for the two 21st 
century intervals (2009–2050 and, respectively 
2051–2092), related to the ERA-40 from the 
period 1958–1999. The statistical significance of 
the climatic signal differs depending on the 
model, and of the two intervals. The most 
extended zones in Europe with a significant 
climatic signal are found in case of two models, 
CNRM and ECHAM5-MPI.  

Increasing of the performance of the Z test 
application is facilitated by the fact that the 
procedure is based on parametric time series 
modeling involving the fitting of low-order AR 
processes. The maximum entropy method was 
used to estimate the AR parameters. Optimal 
orders of AR models, estimated by means of 
BIC, led to the conclusion that real processes are 
more persistent (AR order of 1) while those 
simulated by the four GCMs are less persistent 
(AR model order is 2 or 3). Therefore, the Z test 
for detection of a climatic signal is to be 
preferred to the classic t test, and is recommended 
for use as a powerful tool, provided that the 
respectively time series be fit by an AR model. 

The results of the present study have a strong 
implication in investigations in which the 
pressure is used as predictor for hydro-
meteorological variables, especially for 
precipitation, for which the changes during the 
spring season are very important in the 
hydrological regime. As well, this study will be 
of interest not only for our further studies but 
also for the investigations that need the selection 
of the SLP predictors from the analyzed region 
in order to estimate changes in hydro-
meteorological variables in the 21st century. 

The analysis presented in this paper will be 
extended to SLP from other seasons and for 
other climatic variables at the different isobaric 
levels simulated by GCMs / RCMs. It is also 
necessary to extend this investigation to a wider 
region of Europe, in order to estimate the 
changes in the NAO index in the 21st century. 
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