FOCAL MECHANISMS OF SOME CRUSTAL EARTHQUAKES THAT OCCURRED IN THE PANNONIAN DEPRESSION (ARAD – SOUTH TIMIŞOARA AREA), THE MOESIAN PLATFORM AND NORTH-DOBROGEAN OROGEN

ZINA MALIȚA, FLORIN RĂDULESCU

National Institute of Research and Development for Earth Physics, P.O. Box MG-2, 077125, Bucharest

The paper presents the results of processing made upon the observation data concerning the P-waves generated by the crustal earthquakes (and a few subcrustal ones) that occurred in the Pannonian Depression (Arad – South Timişoara area), the Moesian Platform (in the Wallachian and Dobrogean sector) and through the North-Dobrogean orogen. Short considerations about the seismicity of these active areas were made, as well as about the important seismotectonic elements.

Key words: seismic shock, focal mechanism, crustal earthquake, tectonic stress, active fault, Pannonian Depression, Moesian Platform, North-Dobrogean Orogen.

1. INTRODUCTION

Many papers (Romanian and foreign) analyzed the problem of earthquake mechanisms located in Romania, particularly those placed in the active region of Vrancea (Enescu, 1962; Constantinescu, Enescu, 1963; Müller *et al.*, 1978; Radu, 1965, 1979; Iosif, Iosif, 1979; Enescu, 1980; Constantinescu, Enescu, 1985; Oncescu, 1987; Crişan, Oncescu, 1987, 1988; Gerner, 1995; Radulian *et al.*, 1996; Ardeleanu *et al.*, 1996; Utale *et al.*, 1994, 1995, 1996; Popescu *et al.*, 1997, 1998).

Some of them were related to earthquakes occurred in other active areas such as: Râmnicu Sărat, Tulcea, Banat, Carpathian Foredeep, especially in the bending zone of the Eastern Carpathians, etc. A recent paper (Radulian *et al.*, 2002) is the compilation of results for 526 earthquake mechanism studies produced in Romania during 1929–1997. While preparing the paper, 26 sources of information were used, consisting in published papers (Romanian and foreign) and scientific reports from the archives of the National Institute of Research and Development for Earth Physics. Information is placed in the Vrancea region (subcrustal and crustal area), Banat, Danubian area (western the Southern Carpathians), the Făgăraş–Câmpulung region, Bârlad and Predobrogean Depression. The fault plane solutions were determined, based on P wave polarity (the first arrivals) and in some cases by waveform inversion of local earthquakes and teleshocks. All solutions were determined before 1980 and have been recalculated by Aki and Richards conventions (1980).

Given the diversity of the experts who compiled the survey, the authors of this paper proposed the resumption of this major problem with seismotectonic implications, based on a uniform treatment of primary observation data using the same processing method. Before the presentation of the mechanism parameters, brief consideration of the seismicity and seismotectonics of investigated areas were presented.

2. PANNONIAN DEPRESSION (ARAD – SOUTH TIMIŞOARA)

The area included in our analysis is limited to the following geographic coordinates: latitude $-45^{\circ}-46^{\circ}N$ and longitude $-20^{\circ}-22^{\circ}E$. The first mentions on seismicity of the region were made by Mathei M. Drăghiceanu in his study published in 1896, *Monographie des tremblements de terre*

Rev. roum. GÉOPHYSIQUE / Rom. GEOPHYS. J., tome 54, p. 19-37, 2010, București

de Roumanie et des pays environnants, referring to earthquakes produced during the 1892–1894 period in eastern and western part of the country (Banat, Drobeta-Turnu Severin).

Later, Prof. Ion Atanasiu (1949) appointed the seismic activity from this sector of the Pannonian Basin in the Banatic category, with epicenters at Banloc, Vinga, Sânnicolau Mare, Şag, Timişoara and Periam. Subsequent observations revealed large epicentral intensity (VII and VIII degrees on the Mercalli scale) in Banloc, Liebling–Voiteg, Şag–Parţa, Timişoara, Jimbolia, Periam, Arad and Sânnicolau Mare (Oros, 1991). The author mentions the following strong earthquakes: 1915 (Banloc), 1959 (Şag– Parţa), 1979 (Sânmihaiu Român), 1988 (Buziaş) and 1991 (Banloc and Voiteg). In 240 years (1766–2006), 269 earthquakes were located in this region, 6 of them with $M \ge 5.0$ (1879, 1901, 1959 and three shocks in 1991), 51 earthquakes with M = 4.0 to 4.9 and 92 with M = 3.0-3.9.

The catalogue edited for the region indicated several periods of time with low seismic activity, namely: 1916–1920, 1928–1932, 1937–1940, 1942–1952, 1961–1967, 1969–1972, 1975–1977. In the last period seismicity analysis revealed a number of active periods in terms of the seismic activity, namely: July–December 1991, May–August 1995, October 1999, July–August 2000 and November 2002. The distribution of epicenters of the investigated area is shown in Figs. 1 and 2, showing the 2D and 3D image representation of the seismic foci.

Fig. 1 – Earthquake epicenters distribution that occurred during the 984–2006 period (tectonic background by Radu, Oros, 1991).

Fig. 2 – Earthquake epicenters distribution, isobath map and 3-D image of the seismic foci surface of Banat.

Referring to the most active sequence of 1991, within 6 months there have been produced 108 seismic shocks (3 with M > 5.0 and 7 with $M \ge 4.0$). The three major earthquakes have epicenters in Banloc and Voiteg areas (South of Timişoara).

Geological and geophysical (gravity) studies evidenced several major fractures of the basement, E–W and NW–SE oriented, and the existence of vertical and horizontal movements along these (Visarion *et al.*, 1979). These faults are major tectonic blocks bounded with raising and sinking positions. In a seismotectonic study, Polonic and Maliţa (1997) noted that seismic activity is concentrated along Timişoara–Nădlac and Buziaş–Arad faults, that border the Caransebeş and Sânnicolau Mare grabens.

Among these, the elevation Battonya–Buziaş block is individualized; the Lucareț and N Timișoara faults are mentioned, the first separating (after some authors) the Pannonian Block (North) from the Geto-Danubian block (south of Lucareț fault).

The Timişoara area is characterized by large positive values (80–90 mWm⁻²) of geothermal anomalies (Demetrescu *et al.*, 1991). The geothermal studies reveal that the heat flow source observed at the surface is placed in the upper mantle. After these authors, the temperature distribution in lithosphere of the region is a major factor determining the increase of thermoelastic stress, thus, the generation of normal earthquakes (crustal).

The stress indicators, the focal mechanisms of the earthquakes and *in situ* measurements (in wells) have shown that the accumulated stress in this active area is the compressive type, being caused by the convergence movement and rotation of the Adriatic microplate. According to Polonic and Maliţa (1997), the crustal earthquakes of this region are caused by the compressive forces acting between the Pannonian, Geto-Danubian and Banloc blocks, along the Lucareţ reverse fault.

In Table 1, the focal mechanism solutions for 60 crustal earthquakes produced in the period 1991–2001 are shown. The processing observation data was made with the program Wickens and Hodgson (1967), improved by Oncescu (1980).

In determining the location parameters of these earthquakes (epicenter coordinates, hypocenter depth) information from the archives of National Institute of Research and Development for Earth Physics and the data provided by the National Center in Denver, Colorado, USA (National Earthquake Information Center) and the International Seismological Centre Newbary, Centre, UK (International Seismological Edinburgh, Newbary) have been used. In connection with the observation data, in order to obtain good results, the distribution of azimuth around the epicenter, in at least seven observatories, seismological where focal mechanism solutions were primary calculated. Mechanisms of events with less than seven stations were estimated based on their polarities consistency mechanisms other events that could be determined with a high degree of confidence.

Seismic foci depths were 5-35 km in the middle crust (in lower domain of the granitic layer), here the Conrad discontinuity is considered to be at depths of 14-15 km.

Focal mechanism solutions indicate the faulting plane with two-average directions: the first, N41^oW (for 32 shocks) and the second, N47^oE (for 28 shocks); average inclination of the breaking plane was 56^o. The second (Plane 2) showed also mean directions: one, N50^oE (for 31 shocks) and the other, N48^oW (for 29 shocks) and average inclination – 60° . Faulting type was 43 reverse faults and 17 faults strike-slip.

Concerning the tectonic stress, data processing indicated following compressive forces (P) and tension (T) orientations: for P axes, two prevailing directions around N37⁰W (for 31 shocks) and N45⁰E (for 29 shocks) and for T axes – N44⁰W (for 35 shocks) and N52⁰E (for 25 shocks). The predominant inclination of the compressive force P was around 17^{0} and the tension forces (T), around 47^{0} (Fig. 3).

Strong earthquakes on the Banloc and Voiteg of July 12, 1991 (Mw = 5.6) and December 2, 1991 (Mw = 5.5) were the fault plane azimuth WNW–SEE; compressive forces operated NW– SE, and the tension on NE–SW direction. Seismic foci depths were 11 km and 9 km and both faults were the strike-slip fault type.

F	Az	28	36	47	227	93	173	65	27	318	298	329	60	302	266	100	300	263	86	247	59	00	344	310	210	226	272	93	349	56	73
	dio	27	22	23	39	33	42	46	37	63	54	44	24	36	68	46	40	60	82	26	46	42	42	37	77	29	43	60	27	46	53
8	Az	26	249	181	9	231	38	200	185	146	139	174	197	165	89	232	156	129	294	17	174	219	86	20	83	16	164	304	217	159	203
	Dip	55	64	59	43	49	38	34	51	27	34	44	26	45	22	34	44	22	7	64	22	44	24	33	10	57	19	26	53	13	77
٩	Az	24	131	308	118	349	287	307	289	54	42	72	321	50	359	341	47	31	204	339	281	113	209	187	351	128	56	207	92	261	306
	ġ	23	13	20	22	21	25	24	11	3	10	13	19	23	1	25	19	19	4	4	36	16	38	35	6	14	41	13	24	41	25
	type type	2	i.d.	i.s.	d.i.d.	d.i.d.	i.d.	i.s.	i.s.	i.s.	i.s.	i.s.	d.i.d.	i.d.	i.s.	d.i.d.	i.d.	i.s.	She.	i.s.	d.i.d.	i.s.	i.s.	i.s.	2	i.s.	ario	i.s.	i.d.	d.i.d.	U.
2	Rake	21	155	31	165	171	129	55	36	53	39	26	176	136	60	160	135	46	66	16	166	22	99	25	74	32	109	46	143	168	63
ANE	dia	20	84	88	45	50	80	77	73	48	46	50	69	82	48	36	17	32	49	69	23	48	88	89	37	80	68	39	88	13	75
2	Strike	19	82	178	255	127	226	191	163	119	98	121	66	353	68	118	349	90	120	26	69	160	97	69	70	360	344	267	40	57	195
	type T	18	d.i.s.	d.i.d	i.s.	i.s.	d.i.s.	i.d.	i.d.	i.d.	i.d.	i.d.	i.s.	d.i.s.	i.d.	i.s.	d.i.s.	i.d.	ii-	i.d.	i.s.	i.d.	d.i.d	d.i.d	Į.	d.i.d	d.i.s.	i.d.	d.i.s.	j.	p
	Rake	17	7	178	46	40	16	158	159	124	129	137	32	11	119	55	18	113	80	158	68	136	175	178	102	168	3	119	2	77	150
NE 1	Dip	16	65	59	79	83	40	37	56	5	63	70	86	46	50	79	46	68	42	75	85	74	24	33	55	59	19	63	53	87	32
PLZ	trike	15	174	87	365	223	329	83	61	348	339	14	191	91	289	224	91	319	286	290	172	55	2	337	271	263	27	139	132	159	78
_	۳ ML	14						3,5	3,5	3,7	4,7	10.1	2,9	4,1		4,3			3,6	3,3	4,5	8	4,4	3							
	QW	13									4,8							4,7						2000 - 20 2000 - 20							
	MS	12		5,7		3,5								3,5				D.C.I.S.													
	ЮW	11															3.7								3,4	3,5	3,2	3,2	3,4	3,4	33
	qu	6				4,1			3,3		4,4	5,3	2		4,1					1	4,2										
	ΜW	თ		5,6																											
	(km.)	ω	33	11	10	10	10	10	10	10	10	10	10	10	10	34,5	19,3	25,9	11,2	10	10	10	10	10	10	10	10	10	10	10	33
	Long.E	7	21,06	21,05	20,99	21,17	21,08	21,13	21,07	21,12	21,12	21,05	21,10	21,24	21,10	21,13	21,06	21,08	21,06	21,13	21,15	21,15	21,28	20,97	20,92	20,98	21,00	21,28	21,01	20,94	21.18
	Lat.N	9	45,87	45,36	45,59	45,45	45,50	45,35	45,40	45,43	45,34	45,31	45,32	45,37	45,34	45,33	45,44	45,26	45,40	45,43	45,46	45,47	45,48	45,45	45,31	45,50	45,28	45,35	45,51	45,42	45.26
E	e ::ss		32 4	21 4	15 4	08 4	34 4	57 2	26 4	31 4	52 4	32 4	20 4	29 4	47 4	53 4	24 4	04 4	46 4	49 4	39 2	7 00	33 4	44 2	03 4	50 4	11 2	46 4	18 4	05 2	07 4
Origi	hr:mm	ŝ	15:27:	10:42:	13:55:	16:29:	05:10:	17:56:	17:03:	23:59:	01:19:	01:27:	05:24:	03:36:	03:58:	11:22:	12:57:	00:51:	15:04:	21:25:	04:59:	23:36:	01:34:	23:01:	07:58:	07:28:	22:10:	12:12:	07:45:	07:34:	11:30:
	Day	4	26	12	12	12	13	13	14	14	19	19	19	8	20	31	L	2	9	11	12	14	15	18	29	7	11	13	18	19	25
	Month	e	9	7	7	7	7	7	7	7	7	7	7	7	7	7	8	8	8	∞	8	8	8	8	8	6	6	6	6	6	<i>о</i> ,
	Year	2	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991	1991
	Š	-	÷	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29

The focal mechanisms solutions of some earthquakes occured in the Pannonian Basin (Arad - South Timişoara area)

Table 1

Focal mechanism of some crustal earthquakes

-	2	m	4	2	9	2	8	ი	10	11	12	13	14	15	16	17	8	6	8	2	2	3 27	4 25	26	27	88
30	1991	10	17	14:37:51	45,23	21,10	10			3,5				357	25	50 i	S.	220	71 1	06		29	8 15	35	61	154
31	1991	10	17	15:02:14	45,38	21,16	10			3,4				84	46	156 i	.d.	192	73 4	16 i.	S.	6 31	3 42	208	44	59
32	1991	10	24	16:38:42	45,35	21,25	33			3,3				132	78 1	137	,d.	233	18	Г.	s.	19 18	9 46	300	38	83
33	1991	11	21	02:16:31	45,49	21,17	26,9				2	4,4		41	45	97		211	45 8	33		0 12	6 5	216	85	33
8	1991	11	23	23:36:36	45,36	21,01	10			е				49	37	89		230	53	90		8 32	0	50	82	140
35	1991	12	2	08:49:40	45,49	21,11	თ	5,5			5,6			69	36	166 d	j.d	170	82	55 i.	s. 2	28 28	7 35	176	42	47
36	1991	12	2	10:52:35	45,44	21,06	10	3,4				(1)	3,2	191	16 1	p 6/1	j.d	282	90 C	4	4	t3 27	7 16	282	43	177
37	1991	12	2	15:04:00	45,56	21,78	10							280	99	49 i	.S.	165	47 1	46 i.	d. 1	1 38	3 37	300	50	124
38	1991	12	13	12:02:04	45,55	21,09	10			3,3				122	52	1 d	i.s.	31	89 1	42 i.	d. 2	25 83	3 52	210	27	340
39	1991	12	18	10:24:12	45,92	21,65	10		3,9	2				223	72	58 i	S.	106	37 1	48 i.	d. 2	20 33	6 31	234	52	94
40	1991	12	19	03:12:22	45,90	21,56	10	3,8				7	51	-	52	128 i	d.	130	52	52 i.	- S	0 24	6 29	156	61	336
41	1991	12	21	11:43:06	45,83	21,32	10		3,6					10	72 1	172 d	j.d	103	82	.i	S	7 23	6 70	126	\$	328
42	1992	3	2	20:33:21	45,95	21,63	25,1		4,6			_		114	23	155	.d.	225	76 1	58 I.	s. 2	24 33	9 31	234	49	100
43	1992	ъ	24	15:46:44	45,90	21,50	21,9							183	52	69 i	S.	34	13 1	14 i.	d.	4 28	7 16	196	73	32
4	1992	12	19	09:34:06	45,56	20,95	22,6		4,6			7	8	39	47	55 i	S.	265	53 1	21 i.	d.	3 33	4 24	65	65	236
45	1992	12	33	21:05:14	45,55	21,03	35,2					7	00	239	00	80		19	32 1	20	-	14 33	6 2	244	73	123
46	1993	4	14	08:23:05	45,53	20,95	10					7	1.1	322	57	125	.d.	. 06	46 2	.i 6t	°.	6 28	3 28	121	61	287
47	1993	ъ	00	08:57:57	45,55	21,21	10							183	46	132	,d.	311	80	.i 122	, S	7 65	5 29	331	09	167
48	1993	9	4	23:20:30	45,45	21,38	10							306	64	25 i	.S.	205	58 1	52 I.	d. D	2 25	6 55	350	35	165
49	1994	10	13	13:49:28	45,55	21,19	23		4,4		7	4,1		127	33	108	i	286	20	6,	1	3 24	4	292	74	168
20	1994	10	13	23:31:27	45,49	21,00	10					2222 2222		81	11	159 i	.d.	176	. 02	4	ui vi	5 13	0 66	230	24	37
51	1994	10	15	01:42:51	45,47	21,01	10					0	8,8	146	53	40 i	.S.	28	59 1	35 i.	d.	4 8	3 37	181	52	353
52	1994	11	12	18:50:35	45,94	21,29	10				7	4,8		177	73 1	153 i	.d.	276	54	.i .i	S.	6 22	8 58	328	31	135
53	1994	11	12	19:34:39	45,54	21,00	10				2	4,1		228	12	91	1.	44	19 8	37	. 2	26 31	6 1	47	64	139
54	1996	3	24	09:13:28	45,62	21,02	22,6		4,8			1		271	57 1	120 i	.d.	44	43 4	52 i.	ś	8 34	0 25	74	64	234
55	1999	10	3	04:43:40	45,86	20,84	5		3,2					289	73	76	i.	142	22 1	28 i.	d. 2	27 29	9 13	292	60	178
56	2000	7	22	07:23:36	45,59	21,24	10	2,8						272	41	28 i	.S.	160	72 1	27 i.	d. 1	9 22	3 35	327	49	111
25	2000	00	16	22:14:01	45,58	21,03	33	3,3						26	14	12 d	i.s.	356 3	87 1	04	. 4	32 Ot	3 14	175	46	280
58	2000	10	5	23:04:11	45,62	21,24	10	3,2					3	66	79 1	156 i	.d.	160	56	12 I.	S.	9 11	4 63	222	25	20
59	2001	9	20	15:44:48	45,69	21,33	10	3,1						317	89	170 d	j.d	48	80	1 I.	S.	6 3	80	132	80	272
60	2001	8	2	21:50:45	45,33	20,96	10	3,3						81	65	1 d	i.s.	351	89 1	55 i.	d. 1	17 39	9 65	169	18	303
1 000	n de n	200	ton for	14. :	trof one	- : J	0040120	I tdain	04040	مناطم	to four	;;	1.004	fol of	toton	مناطمان	frog or o	Р м -+	of the second	طمني امد	+ 10400	լուց լո	ہ 1	000	9 1 1 or	Intotol
Legt	in : n.	– notu	nal lau	III; I. – IEVE	ISe Iaui	1. 1.0.	everse	ngnt-	aterat	hiiao	ue Iau.	Ц Г.	– rev	erse lei	t-later		lue rau	Ц п.ц.	- 11011	nan mgu	T-later	al Iaui	ц п.	- nolli	lal lei	-lateral

 Table I (continued)

 25
 26
 27
 28

oblique fault; **i.d.** – reverse right-lateral oblique fault; **i.s.** – reverse left-lateral oblique fault; **d.n.d.** – right-lateral strike-slip; **d.n.s.** – left-lateral strike-slip; **d.n.s.** – left-lateral strike-slip; **d.i.s.** – left-lateral strike-slip; **d.i.s.** –

Fig. 3 – The dip (a) and azimuth (b) of P and T axes of earthquakes occurred in Banat.

In the Jebel–Banloc active area, moderate magnitude earthquakes in 1915 (Mw = 4.3 to 4.8), 1936 (Mw = 4.8), 1960 (Mw = 4.2) and 1980 (mb = 4.2) occurred. The active region is located in the sedimentary basin south of Sânnicolau Mare Graben.

3. MOESIAN PLATFORM

The investigated region includes the sector of the Moesian Platform and a part of the Carpathian Foredeep. Seismic data have been extended to 44.8° N latitude, and in south to latitude 43.5° N and between meridians 22.5° and 29° E. The catalogue includes the period during 1276–2007, 629 earthquakes, of which 565 produced in Romania, 63 in northern Bulgaria and Black Sea and a seismic shock in Serbia. In Fig. 4 the distribution of the earthquake epicenters within the area referred is shown; a seismic foci 3D representation is shown in Fig. 5.

Earthquake epicenters distribution in this area reveals that the western sector (Wallachian) is much less seismically active than the eastern sector (Dobrogean) located eastern of the Intramoesian Fault. Temporal analysis of the seismic shocks produced in the XXth century has shown a significant decreasing of seismic activity in some periods: 1917–1922, 1924–1929, 1931–1941, 1943–1955, 1957–1959, 1961–1966, 1968–1974 and 1978–1979. It's worth mentioning an increasing of the seismic activity in other years as: 1977 (18 earthquakes), 1982 (43 earthquakes), 1995 (22 earthquakes), 1996 (21 earthquakes), 1999 (29 earthquakes), 2005 (60 earthquakes) and 2006 (48 earthquakes).

Fig. 5 – Earthquake epicenters distribution, isobath map and 3-D image of the seismic foci surface of the Moesian Platform.

On the Carpathian Foredeep area, it seems that, in time, it was a migration of the seismic activity from east to west, from an earthquake of magnitude 4.5 on July 9, 1912 (the epicenter west of Râmnicu-Vâlcea) to a seismic shock of 5.2 magnitude on June 20, 1943 (north of Târgu-Jiu) and July 18, 1991, earthquake with Ms = 5.6 (north-west of Drobeta-Turnu Severin), the last one located in the Southern Carpathians. Most of the XXth century earthquakes occurred in

the range 0-10 km deep (about 65%), the rest (about 35%) at depths of 11-35 km. Thus, the earthquakes mostly occur in the sedimentary crust (or in the upper crystalline, consolidated crust), few of them have focus in the middle crust and others in the lower part of the consolidated crust.

The following can be distinguished as active seismic areas in western sector of the platform itself as: Alexandria–Chiriacu, Turnu Măgurele– Caracal and Calafat–Strehaia North. In the transition zone to the Carpathian Foredeep area it has been shown some areas with seismic potential as Ludeşti–Cobia, Tărtăşeşti–Butimanu and Târgu-Jiu–Turnu Severin. North-western of Turnu Severin outlines a very active area, located in the Southern Carpathians. Here, on a relatively small area (about 2500 s/qkm), numerous seismic events occurred, of low magnitude, which culminated in the July 18, 1991 earthquake (Ms = 5.6, depth 11.6 km).

Correlation with regional tectonic elements indicates the connection of these earthquakes with Cerna fault. The great depth (33 km) of these earthquakes shows the extension of this major crustal fault in the lower crystalline crust; previous seismic studies indicating a thick crust of about 40 km.

Among the earthquakes produced in the central sector of the platform, the Alexandria area one (on February 7, 2001, M = 3.2) was optimal for the focal mechanism determination. The analysis showed the fault plane oriented N25⁰W (dip 42⁰); depth focus (33 km) places, respectively in the subcrustal domain (Table 2).

The seismic activity of the eastern sector (Dobrogea) of the Moesian Platform is well known, especially after strong earthquakes on 1960 and 1967, with magnitudes (Mw) of 5.4 and 5.0 respectively (Iosif, 1960; Iosif, Iosif, 1971). An increasing seismic activity was observed after the Vrancea earthquake of March 4, 1977, so at the end of 1977, there have been 23 earthquakes in this area, five of them having magnitudes of 3.6 to 3.9 degrees on the Richter scale (Cornea, Polonic, 1979). Macroseismic observations first made by I. Atanasiu (1949) have shown in this part of the platform many epicenters and lines of "seismic sensitivity" interpreted as representing the structural alignments of the crystalline basement.

Among the earthquakes produced in the 1960–2007 period, it was possible to determine the focal mechanism only for 75 (Table 2). From these, we mention the earthquakes of January 4, 1960, from Căzănești (Ms = 5.4) and February 27, 1967 at Rădulești (Ms = 5.0), with foci at 40 km, and 42 km, respectively.

Determinations of 63 earthquakes produced in the Dobrogea (east of 26^{0} E meridiane) showed one or two predominant faulting directions, one – N39.6⁰E (for 32 earthquakes) and another – N49.3⁰W (for 31 earthquakes) and inclinations of 59.4⁰ and 55.6⁰, respectively. For other breaking plane the prevailing direction was N35.7⁰ E (for 39 shocks) and N 44.9⁰ W (for 24 events) and prevailing inclinations of 55.8⁰ and 58.6⁰, respectively.

The types of faulting derived from the focal mechanism solutions were the reverse faults and strike-slip faults.

Concerning the tectonic stress, the axis of compression forces (P) presented two prevailing directions, quasi NW–SE (N49, 5^{0} W) and NE–SW (N 41.6⁰ E).

The dips of the compressive forces were almost horizontal, with average dips of 20° and 18° , compared with the tension axis (T) which operated to dips of 41° . Tension stress occurrs around the direction of N42.5°E and N62.5°W. In Fig. 6 were represented the azimuths and dips of the P and T axes for all 75 earthquakes in the investigated area of the platform.

In conclusion, the fault plane solutions from the Dobrogea sector have shown the existence of two faulting systems (already known from previous geophysical works), one mainly oriented NW–SE and the other side, NE–SW. The first category includes the major active faults (from west to east): Intramoesic fault and Nehoiu– Smeeni–Dragalina, Slobozia–Feteşti and Capidava Ovidiu faults. The group of secondary faults is composed of Bărăitaru–Făurei–Oprişeneşti, Urziceni–Jugureanu, Ileana–Colelia, Cartojani– Grădinari and Videle–Bălăria faults (from north to south).

The events analyzed in the 1960–2007 period have shown the existence of a compressive regime, oriented NW–SE, the same tectonic stress appeared too at the earthquake occurred at Rădulești on February 27, 1967 (Ms = 5.0). Along the Intramoesian fault were located only a few earthquakes. Also, more seismic shocks were related to fracture Nehoiu–Smeeni–Dragalina, this fault seems to be related to the shock from January 4, 1960 (Ms = 5.4).

_	Az	36	21	239	119	205	266	358	220	210	320	52	303	157	346	172	113	359	181	184	263	189	119	281	285	49	243	359	316	306
•	Dip	25	11	7	36	31	70	٢	48	24	8	42	65	43	52	57	65	52	27	22	55	27	57	49	73	67	64	43	48	53
~	Az	24	286	339	19	332	89	89	34	339	100	285	115	7	117	343	304	141	291	290	168	43	28	53	181	208	14	219	47	200
ш	Dip	23	24	54	14	45	20	20	42	55	79	34	25	43	27	33	24	32	34	35	4	58	1	30	4	21	17	39	1	13
	Az	22	134	145	271	96	358	266	127	108	229	173	206	261	220	76	212	244	62	69	75	287	297	159	90	301	110	111	138	101
	Dip	21	63	35	51	29	-	70	3	24	7	30	3	16	24	4	4	19	43	47	35	15	33	25	16	7	18	22	42	36
41-1-C	type	20	n.d.	d.n.d.	n.s.	d.i.d.	i.s.	n.d.	i.s.	d.d.	d.i.d.	d.i.s.	i.d.	i.d.	i.s.	i.s.	i.d.	i.d.	n.s.	d.n.d.	100	d.i.s.		i.d.		i.s.	1	d.i.s.	<u> (10)</u> -	1 <u>711</u>
	Rake	19	-118	-158	-31	179	63	-118	40	180	179	12	125	135	62	50	121	149	-55	-156	92	10	87	154	95	64	71	20	103	103
ANE 2	Dip	18	60	61	16	45	48	48	61	55	79	35	47	73	74	57	54	38	81	39	80	59	12	34	62	56	65	42	3	83
2	Strike	17	271	289	318	240	69	69	4	249	5	210	320	204	109	301	144	14	118	230	348	331	25	293	3	193	7	155	240	3
4.10	type	16	n.s.	n.s.	n.ď.	i.s.	i.d.	n.s.	i.d.	i.s.	d.i.s.	i.d.	i.s.	i.s.	i.d.	i.d.	i.s.	i.s.	d.n.d.	n.s.	i.s.	i.d.	022	i.s.	ji -	i.d.	i.d.	i.d.	-	U.
	Rake	15	-51	-31	-63	45	117	-63	144	35	11	124	58	23	149	135	55	56	-164	-54	69	149	91	59	81	123	125	130	89	33
ANE 1	Dip	14	40	71	82	89	49	49	56	90	89	83	53	48	32	50	46	71	36	75	11	82	78	76	29	42	31	77	87	15
2	Strike	13	138	187	17	331	287	287	252	339	95	110	94	309	352	196	278	129	221	121	147	236	208	45	173	54	225	50	47	144
	Mw :	12	5,4		3	3,2	3,1	3,5	3,4	2,6				2,9		3,1		2,6	3,2	3,1	e e	2,7		3		2,5	3,2	3,2		36
	ML	11					4	4,2													_							-		
	MD	10														4,1												-		
	Ms	6		5	3,9								2,9			3,4	3		3											
1110	(km.)	8	40	42	11	34	25	2	19	33	10	15	13	10	33	10	10	10	4	0		10	33	10	33	10	4	33	10	800
	ong.E	7	27,00	26,70	26,12	27,38	25,89	25,34	26,37	25,70	22,70	26,73	22,71	27,18	23,15	27,11	27,04	27,17	27,14	27,46	25,49	26,91	25,97	26,31	26,31	26,59	25,45	25,76	26,64	27.86
	at.N L	6	14,60	14,90	14, 18	14,07	14,55	14,75	13,98	14,23	14,79	13,80	14,40	14,74	14,33	14,47	14,52	14,34	14,54	14,78	14,64	14,69	14,47	14,43	14,58	14,60	14, 19	13,99	13,58	14 66
Origin	IIme I:mm:ss	5	2:51:52	1:00:42	1: 16: 15	9:51:18	7:59:04	9:01:05	4:21:19	4:54:42	9:12:32	3:06:33	1:00:59	2:43:20	2:01:36	0:03:44	4:25:00	3:07:48	9:34:20	2:57:14	5:17:57	8:26:42	3:50:15	0:12:31	2:00:03	2: 19:08	1:35:09	1:41:48	7:26:25	1-27-03
	ay hr	4	4 1	27 2	20 2	8	25 0	7 1	12 0	21 0.	23 1	1 0	17 1	31 1	28 2	29 0	4 0	30 1	15 0	15 1	26 0	28 1	22 0	1 1	12 0	5 1	31 1	7 0	26 0	7 1
	onth	3	1	2	4	12	8	7	6	8	8	10	2	5	6	Б	10	2	7	7	Ю	3	6	11	ъ С	8	12	2	3	10
2	ear M	2	960	967	277	980	983	988	060	991	991	991	992	993	993	993	993	994	994	994	995	995	996	997	999	000	000	001	002	000
	ю. Y	-	1 15	2 1	3 19	4 15	5 1	6 1	7 15	8 1!	9 1	10 15	11 15	12 1	13 15	14 1	15 1	16 1	17 19	18 1	19 1	20 15	21 15	22 15	23 15	24 21	25 21	26 21	27 20	10 21
	Z						(1,50)	-			-		1			<u>,</u>	,		1	,	`,—	. 1	. 4	14	. 4	. 4	14		. 4	.,

The focal mechanisms solutions of some earthquakes occurred in the Moesian Platform and Carpathian Foredeep

Table 2

																						Tal	ole 2 (conti	(pənu
-	2	3	4	5	6	7	8	თ	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
29	2002	10	20	09:14:25	44,56	26,30	20				2,6	354	89	130	i.d.	85	40	2	d.i.s.	32	52	40	173	34	297
30	2003	1	16	20:34:20	43,60	26,71	0				2,8	96	58	139	i.d.	210	57	40	i.s.	1	154	40	245	50	62
31	2003	2	3	08:22:44	44,24	26,52	16				2,6	8	73	172	d.i.d.	100	82	17	d.i.s.	6	233	71	124	18	325
32	2003	3	5	06:39:12	44,31	27,18	2				2,9	340	37	-	d.i.s.	249	90	127	i.d.	34	308	37	69	35	190
33	2003	3	7	11:34:50	44,13	26,49	10				2,8	321	53	153	i.d.	69	69	41	i.s.	10	191	45	91	43	290
34	2003	3	10	00:13:52	44,22	26,52	10				2,9	198	43	92	1. 1.	16	47	88		2	107	1	17	88	252
35	2003	3	27	03;03:27	44,74	26,59	33				2,7	266	88	80	l.	163	11	167	d.i.d.	42	9	10	266	46	166
36	2003	4	7	23:43:16	44,30	26,55	7				2,6	235	86	45	i.s.	141	45	175	d.i.d.	27	359	45	239	33	108
37	2003	80	27	12:05:36	44,02	25,98	56				2,7	26	53	76	ii -	227	39	107	922	7	126	11	35	77	248
38	2003	11	2	01:33:10	44,63	25,84	33				2,8	212	53	43	i.s.	93	57	134	i.d.	2	153	36	245	54	60
39	2003	12	4	12:41:09	44,71	27,01	10		2,9			103	87	152	i.d.	195	62	4	d.i.s.	17	152	62	277	22	55
40	2004	7	10	12:12:17	44,47	26,85	2				2,6	1	71	11	d.i.s.	268	80	160	i.d.	9	315	68	60	21	223
41	2004	8	21	20:22:54	44,74	25,44	11				2,8	248	48	157	i.d.	353	73	44	i.s.	16	116	43	10	43	220
42	2004	0	4	11:08:25	44,36	27,74	0				2,3	272	54	5	d.i.s.	179	86	144	i.d.	21	231	54	354	28	129
43	2004	6	18	03: 14: 24	44,16	25,56	9				2,8	42	55	175	d.i.d.	135	85	35	i.s.	21	263	55	141	27	4
44	2004	10	5	10:43:12	43,90	24,84	5				-20 	180	52	61	i.s.	42	46	121	i d.	3	290	22	199	8	27
45	2004	10	12	20:38:17	44,25	27,47	0				2,5	87	53	128	i.d.	215	51	51	i.s.	1	151	29	242	61	59
46	2005	2	12	00:01:25	44,41	26,88	0				2,8	323	36	72	18	165	56	103		10	246	10	338	75	113
47	2005	3	15	11:20:24	44,25	28,27	6		1,9			227	85	4	d.i.s.	136	86	175	d.i.d.	1	182	84	278	9	92
48	2005	4	9	05:04:43	44,64	27,00	10		2,2			1	44	11	d.i.s.	263	83	133	i.d.	25	321	43	76	37	211
49	2005	4	17	08:42:03	44,26	28,41	10		2,2			213	80	10	d.i.s.	121	80	170	d.i.d.	0	167	76	258	14	77
50	2005	5	8	03:53:47	43,81	26,87	11		2,9			299	11	15	d.i.s.	194	87	100	ņ	41	274	11	14	47	115
51	2005	8	22	01:22:19	44,69	26,77	6		2,7			281	84	169	d.i.d.	12	79	7	d.i.s.	3	327	77	73	12	236
52	2005	8	24	17:07:24	44,76	27,03	10		2			55	51	131	i.d.	181	54	51	i.s.	2	297	31	206	59	30
53	2005	00	24	17:20:25	44,69	26,98	7				2,9	296	36	169	d.i.d.	35	84	53	i.S.	30	153	35	40	41	272
54	2005	80	24	21:18:04	44,80	27,03	10		2,8			332	57	160	i.d.	73	73	35	i.s.	11	199	52	96	36	297
55	2005	∞	25	17:53:55	44,78	27,01	10				3,1	276	86	103	i.	24	14	19	d.i.s.	40	354	13	95	47	200
56	2005	00	26	12:23:23	44,31	27,91	5		2,7			165	58	25	i.s.	61	69	145	i.d.	7	115	50	214	39	20
57	2005	00	27	04:13:55	44,74	27,02	0		2,8			348	60	64	i.s.	213	39	128	i.d.	11	96	22	2	65	212
58	2005	80	27	12:18:09	44,75	27,00	3				2,7	227	64	162	d.i.d.	325	74	27	i.s.	7	94	59	354	30	188
59	2005	∞	27	20:00:00	44,67	26,96	4	_	2,8			309	74	142	i.d.	51	54	20	d.i.s.	13	4	49	110	38	264
60	2005	8	27	22:55:42	44,79	27,03	0		2,9			187	52	97		356	39	82		7	272	9	3	81	132

(tinuea)	26	98	283	148	306	289	39	254	250	87	211	186	204	88	285	352	normal	
(con	25	1 57	53	37	36	37	53	2	9	33	8	25	67	8	49	47	1.s. – – left	
able 2	24	292	17	358	181	91	231	78	56	311	315	332	331	317	129	90	ault; 1 I. n.s .	
7	23	9 32	0 4	0 49	39	2 52	7 36	7 26	0 84	3 48	2	61	14	3 14	38	7 7	eral f lip; d	
	22	19(11(25(62	19,	137	347	16(193	45	6	66	22	29	18	ht-lat rike-s	
	21	2	37	15	31	0	9	2	~	23	10	14	18	16	12	42	ıal rig ral st	
	20	i.d.	i.	i.d.	i.d.	i.s.	i.d.	i.d.	d.i.d.	d.i.s.	3 <u>72-</u>	i.s.	i.d.		i.d.		- norm ht-late	
	19	128	87	140	129	33	133	124	177	6	2	28	119	106	133	82	n.d. – – rigl	
	18	60	82	76	87	72	60	52	85	48	35	83	30	62	67	87	e fault; d.n.d.	
	17	136	17	195	2	66	76	280	294	234	138	319	176	145	328	90	obliqu e fault;	
	16	i.s.	i.d.	d.i.s.	d.i.s.	i.d.	i.s.	i.s.	d.i.s.	i.d.	80	d.i.d.		i.s.	i.s.	i.d.	t-lateral obliqu	
	15	43	113	18	5	158	40	55	5	138	87	172	74	62	32	158	erse lefi -lateral	
	14	47	9	52	39	58	50	49	87	84	55	62	64	32	47	8	. – reve rse left	
	13	258	220	296	97	324	194	53	25	138	313	226	324	293	81	338	ault; i.s – reve	
	12						2,9								2,6		ique f t; i.s. e-slip	
	11															2,9	al obl e faul l strik	
	10	3,1	3	3,1	2,8	2,7		3,1	2,7	3,1	2,7	2,4	2,6	3,6			-latera blique latera	
	6																eral c eral c – left-	
	8	5	0	10	10	00	0	9	٦	9	0	15	0	30	58	15	reverse ight-lat '; d.i.s.	
	7	27,06	27,06	26,99	27,23	26,82	25,85	26,70	28,17	26,58	28,00	28,27	27,16	28,08	26,59	26,27	t; i.d. – everse r ike-slip	
	6	44,76	44,78	44,69	44,78	44,75	44,62	44,29	44,56	44,12	44,68	44,02	44,64	44,73	43,98	44,73	rrse faul i.d. – re iteral str	
	5	23:50:52	06:17:06	15:59:07	09:46:18	16:33:26	14:50:40	11:14:19	15:30:05	16:54:50	16:09:46	03:43:13	12:14:03	10:47:06	00:45:11	03:58:24	;; i. – reve ue fault; – right-la	
	4	27	28	28	3	15	27	16	31	31	10	14	5	9	17	24	al fault 1 obliq 5, d.i.d.	
	З	80	80	00	0	б	0	10	10	10	11	11	12	2	3	4	– norm t-latera ike-slip	
	2	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005	2006	2006	2007	str str	
	٢	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	Lege	

Fig. 6 – The dip (a) and azimuth (b) of P and T axes of earthquakes occurred in the Moesian Platform.

4. NORTH-DOBROGEAN OROGEN

The seismicity of this region has been observed since 1949 by Ion Atanasiu, who evidenced the lines of "seismic sensitivity": Tulcea–Isaccea– Galați, Cerna–Măcin–Brăila and Babadag– Nicolae Bălcescu. In a previous paper (1938), Ioan G. Popescu mentions the epicenters from Tulcea, Isaccea, Babadag and Topolog. There were located, between 1871–1929, 11 earthquakes in the Galați–Sulina area and 3 shocks connected by the Peceneaga–Camena fault.

The information presented by us refers to the area included within the following geographic coordinates: latitude 44.5° – 45.5° N and longitude 28.0° – 29.0° E. In the south, the data included a part of Central Dobrogea too, belonging to the Moesian Platform.

Thus, between 1831-2006, were located 218 earthquakes with M = 1.9 to 5.6 and depths of 0–33 km, in the region; 51 shocks had magnitudes greater than 3.5 (Figs. 7, 8).

Historical earthquakes produced in the XIXth century and early XXth century had magnitudes and depths estimated at higher values; so, seismic events produced at depths of 40–50 km and a magnitudes of 5.3 to 5.6 existed. Epicenter distribution indicates their concentration in SE Măcin, Tulcea area north of Babadag.

In Table 3 are presented the focal mechanisms of 18 earthquakes produced during 1980–2006. The faulting plane indicates two average directions: one, N35⁰E (NE–SW) and another, N43⁰W (NW–SE), with a predominant dip of 56⁰. The faulting type was the reverse fault (16) and two strike-slip faults. The average tectonic stress directions had been as follows: for compressive forces (P), N63⁰E (ENE–WSW) and N44⁰W (NW–SE), the latter being predominant, the tension forces (T), a main direction, N41⁰W (NW–SE) and other, secondary, N60⁰E (ENE–WSW). The compressive forces operated in a horizontal plane (with an average slope of 18°) and the tension forces had an average dip of 60° (Fig. 9).

The strong earthquake occurred on November 13, 1981 (Mw = 5.1), located east of Tulcea, was generated on a fault oriented NE–SW, situated at depth of 4–9 km (Oncescu *et al.*, 1989). Main shock (MD = 5.4) was followed by six aftershocks with MD = 2.9 to 3.5. The authors noted the migration of seismic activity from NE to SW along a distance of about 23 km.

Fig. 7 – Earthquake epicenters distribution that occurred in Dobrogea during the 1831–2006 period (tectonic background after Visarion *et al.*, 1990).

The recalculating of the faulting plane indicates a plane oriented NE–SW (N120⁰W). A similar solution provided Gabriela Polonic in 1986. The P axis was oriented ENE–WSW (N73⁰E) and the tension axis (T) NNW–SSE (N11⁰W).

The Niculițel–Cataloi–Cerna area revealed as a active seismic area with foci situated in the crystalline crust seismic of the Tulcea tectonic zone and of the Niculițel nappe. Many earthquakes are related to tectonic line Luncavița–Consul; foci were located at depths of 5–10 km, the area belonging to the crystalline crust.

The earthquakes located in the south of Tulcea are extended to the west, near the tectonic contact with the Măcin unit (line Luncaviţa–Consul). Some earthquakes are related to this tectonic contact or associated satellite faults. The region is particularly active there were located about 15 seismic shocks, concentrated in a relatively small area.

Fig. 8 – Earthquake epicenters distribution, isobaths map and 3-D image of the seismic foci of Dobrogea.

F	Dip Az	25 26	47 150	69 252	35 139	70 168	37 246	60 274	50 338	43 141	666 278	32 175	84 353	60 302	48 274	45 221	20 85	6 178	83 298	69	•
_	Az	24	51	48	4	52	10	28	234	12	156	316	207	86	24	28	253	36	201	317	-
z	Dip	23	6	20	46	6	37	29	12	35	14	51	5	25	17	45	02	82	-	14	•
	Az	22	313	141	247	320	128	176	134	260	61	72	117	183	127	124	354	268	111	223	
	ġ	21	42	00	24	17	32	4	38	28	20	19	е	15	37	9	4	5	2	16	•
E au 14	type	20	-	i.d.	di.s.		i.s.	i.s.	<u>s</u>	i.d.	j.s.	di.d.	, i	i.d.	-	i.s.	di.d.	dis.	-	-	
~	Rake	19	66	121	10	71	53	54	27	125	59	170	96	135	73	39	168	1	8	106	
LANE	diD	18	87	41	47	29	87	56	13	81	28	53	48	37	84	65	74	82	38	62	,
٩	Strike	17	52	22	288	35	6	62	171	198	128	210	31	305	22	1	128	313	201	145	
E au de	type	16	d.i.s.	1.5.	i.d.	į.	d.i.d.	i.d.	, i	dis.	ļ.	si.	Ì.	5	i.d.	i.d.	d.i.s.	d.i.d.	-	.S.	
	Rake	15	17	66	136	100	175	131	102	15	105	38	83	62	160	149	17	172	91	62	-
LANE1	Dip	14	6	56	8	63	37	48	2	36	88	82	42	65	18	55	79	89	52	32	
Ē	Strike	13	338	25	191	237	274	294	55	300	342	306	202	73	273	252	221	223	22	293	
	٦	12				3,9								3,1	3,8	3,8	2,7	3,5	3,3		;
	Đ	11					3,3		3,1	3,4	3,4									3,6	-
	Mw	10	4,2	5,1		3,1															.
	å	6											4,8								
Denth	(km.)	8	20,4	15	10	10	10	5	10	5	5	33	31	0	3	0	0	5	0	30	
	Long.E	7	28,03	29	28,81	28,9	28,41	28,89	28,36	28,39	28,39	28,03	28,97	28,24	28,79	28,88	28,94	28,94	28,24	28,08	
	Lat.N	6	45,32	45,17	45,04	45,2	45,15	45,02	45,12	45,12	45,12	45,12	45,2	45,22	45,16	45,14	45,03	45,18	45,22	44,73	,
Origin *ime	hh:mm:ss	5	23:24:25	09:07:13	15:21:36	20:21:43	10:24:39	09:23:59	08:49:42	11:03:45	11:06:18	15.12.47	09:02:07	08:55:55	18:36:55	17.15.30	11:34:54	12.29.21	05:18:34	10:47:06	
	Day	4	11	13	6	3	24	13	21	6	8	19	3	8	24	18	24	18	23	9	•
	Month	3	6	11	ъ	6	11	9	00	8	5	1	10	11	11	1	-	4	4	2	
	Year	2	1980	1981	1991	1992	1994	1997	1997	1998	1999	2001	2004	2004	2004	2005	2005	2005	2005	2006	
	Š	1	+	2	Э	4	5	9	7	00	6	10	11	12	13	14	15	16	17	18	,

Table 3

Legend: n. – normal fault; i. – reverse fault; i.d. – reverse right-lateral oblique fault; i.s. – reverse left-lateral oblique fault; n.d. – normal right-lateral fault; n.s. – normal left-lateral oblique fault; i.d. – reverse right-lateral oblique fault; i.s. – reverse left-lateral oblique fault; d.n.d. – right-lateral strike-slip; d.n.s. – left-lateral strike-slip; d.n.s. – left-lateral strike-slip; d.n.s. – left-lateral strike-slip; d.n.s. – reverse left-lateral oblique fault; i.s. – reverse left-lateral oblique fault; d.n.d. – right-lateral strike-slip; d.n.s. – left-lateral strike-slip; d.n.s. – left-lateral strike-slip; d.n.s. – left-lateral strike-slip.

(a)

36

0

30

150

60

(b)

Fig. 9 – The dip (a) and azimuth (b) of P and T axes of earthquakes occurred in North Dobrogea.

REFERENCES

- ATANASIU, I. (1949), Cutremurele de pământ şi sensibilitatea seismică din România. An. Acad. R.P.R., Secția Şt. Geol., Geogr., Biol., seria A, tom 1, mem. 5, 20 p.
- ATANASIU, I. (1961), *Cutremurele de pământ din România*. Ed. Acad. R.P.R., București.
- CONSTANTINESCU, L., ENESCU, D. (1963), Caracteristicile mecanismului cutremurelor carpatice şi implicațiile lor seismotectonice. St. Cerc. Geofiz., 1, 51–98, Bucuresti.
- CONSTANTINESCU, L., ENESCU, D. (1985), *The Vrancea* earthquakes within their scientific and technological framework, (in Romanian). Publishing House of the Romanian Academy, 230 p., Bucharest.
- CORNEA, I., POLONIC, G. (1979), Date privind seismicitatea și seismotectonica părții de est a Platformei Moesice. St. Cerc. Geol., Geofiz., Geogr., seria Geofizică, **17**, 2, 167–176.
- CRIŞAN, E., ONCESCU, M.C. (1987, 1988), Catalogue of the focal mechanism solutions for the Romanian

earthquakes occured between 1982 and 1987, Part I, II, III. Report CFPS/CSEN 30.86.3, Bucharest.

180

Т

- DEMETRESCU, C., VELICIU, Ş. (1991), Heat flow and lithospheric structure in Romania, in vol. Terrestrial Heat Flow and the Lithosphere Structure, V. Cermak, L. Rybach eds., Springer Verlag, 189–205, Berlin.
- ENESCU, D. (1962), Sursa seismică teoretică echivalentă focarelor unor cutremure din Vrancea. Com. Acad. R.P.R., 12, 12, 1279–1290, București.
- ENESCU, D. (1980), Contributions to the knowledge of the focal mechanism of the Vrancea strong earthquake of March 4, 1977. Rev. Roum. Géophys., 24, 1, 3–18, Ed. Acad. Rom., Bucureşti.
- GERNER, P. (1985), Catalogue of earthquake focal mechanism solutions for the Pannonian region (42⁰– 52⁰N latitudes and 120⁰–180⁰E longitudes). Geophys. Depart., Eötvös Univ., Budapest.
- IOSIF, T. (1960), Focar seismic adânc în Câmpia Română. St. Cerc. Astr., 2.

- IOSIF, T., IOSIF, S. (1979), Vrancea Earthquake of March 4, 1977 – A Multiple Seismic Event and its Seismotectonic Implications. Rev. Roum. Géol., Géophys., Géogr., série Géophysique, 23, 3–17, Bucureşti.
- MÜLLER, G., BONJER, K.P., STÖCKL, H., ENESCU, D. (1978), The Romanian earthquake of March 4 1977. Rupture process inferred from fault-plane solution and multiple-event analysis. J. Geophys., 44, 203–218, Germany.
- ONCESCU, M.C. (1987), On the stress tensor in Vrancea region. J. Geophys., 62, 62–65.
- ONCESCU, M.C., BAZACLIU, O., POPESCU, E. (1989), *The Tulcea earthquake of November 13, 1981.* Rev. Roum. Géol., Géophys., Géogr., série Géophysique, 33, 23–28, Ed. Acad. Rom., Bucureşti.
- OROS, E (1991), Cutremurele de pământ din Câmpia Banatului. Ed. Graffiti, Timișoara.
- POPESCU, E., UTALE, A., RADULIAN, M. (1997, 1998), Focal mechanism of Romanian earthquakes occurred in 1996, 1997. (in Romanian). Report INFP/MCT, nr. 209B, Bucureşti.
- RADU, C. (1965), Regimul seismic al regiunii Vrancea. St. Geol., Geofiz., Geogr., seria Geofizică, 3, 2, 231– 279, Ed. Acad. Rom., București.
- RADULIAN, M., ARDELEANU, L., CAMPUS, P., SILENY, J., PANZA, G.F. (1996), Waveform inversion of weak

Vrancea (Romania) earthquakes, Studia Geoph. Geod., 40, 367–380, Springer Verlag.

- RADULIAN, M., MÂNDRESCU, N., POPESCU, E., UTALE, A., PANZA, G. (2000), *Characterization of Romanian seismic zones*, Pure and Applied Geophysics, 157, 57–77.
- RADULIAN, M., POPESCU, E., BÂLĂ, A., UTALE, A. (2002), Catalogue of fault plane solutions for the earthquakes occurred on the Romanian territory. Romanian Reports in Physics, 47, 663–685, Bucureşti.
- UTALE, A., POPESCU, E., RADULIAN, M. (1995, 1996), Focal mechanism of some Romanian earthquakes occurred in 1994, 1995 (in Romanian). Report INFP/MCT nr. 209B, Bucureşti.
- VISARION, M., SĂNDULESCU, M (1979), Basement structure of Pannonian Depression of Romania (in Romanian), St. Cerc. Geol., Geofiz., Geogr., seria Geofizică, 17, 2, 191–201.
- VISARION, M., SĂNDULESCU, M., STĂNICĂ, D., VELICIU, Ş. (1988), Contributions à la connaisance de la structure profonde de la Platforme Moesienne en Roumanie. St. Tehn. Ec., seria D (Geofizică), 211–222.
- VISARION, M., SĂNDULESCU, M., ROŞCA, V., STĂNICĂ, D., ATANASIU, L. (1990), La Dobrogea dans le cadre de l'avant-pays carpatique. Rev. Roum. Géophys., 34, 55–65, Ed. Acad. Rom., Bucureşti.

Received: October 13, 2010 Accepted for publication: March 14, 2011