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Modélisation inverse Bayesienne des diagraphies électriques conventionnelles. 
L’article présente l’élaboration d’un algorithme probabilistique Bayesien pour la 
modélisation inverse des données de résistivité apparente enregistrées à l’aide des 
dispositifs conventionnels (normaux et latéraux) de carottage électrique et l’implémentation 
de l’algorithme par un logiciel d’inversion efficace et rapide. Les modèles géoélectriques 
utilisés sont des milieux multistratifiés avec les interfaces de séparation planes-
parallèles, leurs paramètres étant les profondeurs des interfaces et les résistivités des 
couches homogènes et isotropes. La formulation Bayesienne du problème inverse 
permet l’incorporation de l’incertitude associée aux paramètres initiaux du modèle ou 
aux données géophysiques enregistrées, conduisant à une estimation optimale et la 
plus probable du modèle d’interprétation. Les essais effectués avec l’algorithme 
proposé ont montré sa capacité d’optimiser un modèle géoélectrique initial et de 
produire le meilleur ajustement des données, tout en considérant le bruit géologique et 
les informations disponibles a priori sur les données ou les paramètres du modèle. Le 
domaine d’applicabilité de l’algorithme couvre non seulement la modélisation inverse 
des diagraphies électriques, mais aussi l’interprétation automatique de tous les types 
de données géophysiques, par une modification convenable du module de 
modélisation directe. Les procédés classiques d’inversion peuvent être obtenus 
comme solutions particulières de cette méthode probabilistique générale. 

Key words: apparent resistivity, Bayesian, borehole geophysics, electric log, inversion, 
probability density. 

1. INTRODUCTION 

The classical automatic interpretation procedures of geophysical data which 
are based on inversion require a fitting of the measured values by means of a 
theoretical dataset, using the least-squares criterion. For surface and borehole 
apparent resistivity data inversion, frequently used were gradient, quasi-Newton or 
ridge regression methods (Levenberg, 1944; Marquardt, 1963; Inman, 1975; Rijo et 
al., 1977; Petrick et al., 1977; Pelton et al., 1978; Hoversten and Morrison, 1982; 
Yang and Ward, 1984; Whitman et al., 1989; Loke and Barker, 1996) as well as 
methods employing the generalized inverse matrix (Lanczos, 1961; Inman et al., 
1973; Jupp and Vozoff, 1975; Pous et al., 1985). Due to the non-linearity of the 
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inverse problem, the geophysical interpretation model results from an iterative 
minimization procedure. 

The main problem that apparent resistivity data inverse modeling has to deal 
with is the non-uniqueness of the solution caused by the existence of multiple 
equivalent geoelectric models. Also, it is possible that the obtained solution, 
depending on the selection of the initial geoelectric model, may not correspond to 
the geological reality or modify the a priori known parameters and constraints 
included in the initial model. The disadvantage of such an approach is related to 
convergence problems that may arise during the inverse modeling. Also, the 
likelihood of errors affecting the a priori information is ignored, even if this kind 
of information usually has a low degree of confidence. 

From the probabilities theory perspective, the mathematical bases for using a 
priori information in the inverse modeling were elaborated by Goltsman (1971), 
Tarantola and Valette (1982), Jackson and Matsuura (1985) and Tarantola (1987), 
comprehensive overviews of this method being given by Mosegaard and Tarantola 
(2002, 2005). Up to now, the probabilistic inversion techniques have been applied 
for the interpretation of seismic data (Duijndam, 1988) and surface apparent resistivity 
surveys (Andersen et al., 2003; Malinverno and Torres-Verdin, 2000; Pous et al., 
1987). The application of Bayes’ theorem (1763) allows combining the information 
provided by the observational data with other types of information, geological or 
not, related to the parameters of the interpretation model or the constraints which 
may be applied to these parameters. The probabilistic treatment of observational 
data, a priori information and constraints, within the inverse modeling, leads to 
obtaining a unique solution in agreement with all the available information. 
Furthermore, the probabilistic inversion of geophysical data is an efficient 
technique for avoiding a non-convergence of the iterative process required to 
determine an optimum solution. Such problems may appear, for example, when the 
parameters of the initial interpretation model are badly chosen or when the 
observational data are not compatible with the imposed model (data measuring 
errors, interpretation models different from the real geological structure, etc.). 

The probabilistic inverse modeling has a maximum degree of generality and 
may be applied for the interpretation of any kind of geophysical data. Classical 
inversion methods represent only particular cases of this general algorithm and are 
obtained by imposing particular probability distributions for the measured data or 
the model parameters. 

2. DESCRIPTION OF THE PROPOSED METHOD 

2.1 PROBABILISTIC INVERSION WITH A PRIORI INFORMATION 

Let us consider a random vector y whose components y1, ..., yN are random 
variables representing discrete observational data, measured in the x1, ..., xN 
positions of a non-random vector x. The geophysical interpretation model is 
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determined by the components of a random vector p = p1, ..., pM, containing the 
unknown values of model parameters. Forward modeling relates to the 
determination of a theoretical set of values f1, ..., fN representing the effect of a 
particular interpretation model (a formal, non-linear, functional f), in the x1, ..., xN 
positions of a vector x and for given fixed values of the model parameters. Inverse 
modeling tries to determine the components of the parameters vector p, using the 
observational data y. 

For simplification purposes, it may be assumed that the f(p,x) response of an 
electric log only depends on the unknown parameters p of the geoelectric model 
(for a multilayered model, these parameters might be the true resistivities and the 
depths of separation interfaces) and, also, that the recorded apparent resistivity 
curve y was sampled with a constant depth step. 

Disregarding the dependency upon the vector x = x1, x2, ..., xN which stores 
the N sampling points depths, it should be generally considered that 

 y ≡ f(p). (1) 

As y and p are variable vectors, a probability density P can be associated to 
each of them. The Bayes theorem may be written 
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where: P(p) – probability density for the unknown parameters p of the geoelectric 
model (the a priori probability density), reflecting the degree of knowledge for 
these parameters in the absence of observational data; P(y) – probability density for 
the observational data y; P(y|p) – conditional probability density of vector y with 
respect to vector p (the likelihood function), describing the theoretical link between 
the observational data and the geoelectric model parameters; P(p|y) – conditional 
probability density of vector p with respect to vector y (the a posteriori probability 
density), i.e., the probability density for the unknown model parameters after the 
acquisition of observational data. 

The probabilistic inverse modeling is carried out by maximizing the a posteriori 
probability density P(p|y) and selecting the corresponding set of parameters p, as 
the ones which optimally, and most probably, explain the recorded apparent 
resistivity data: 

 P(p|y) maximum ⇒ p. (3) 

The probability density used within the elaborated inversion algorithm is the 
normal (Gaussian) distribution of a random variable p, given by 
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where µp represents the mean (most probable) value of the random variable p and 
σp its standard deviation. The square of this value, D(p) = σp

2, stands for the 
variance (dispersion) of variable p. 

For M independent random variables p, characterized by the probability densities 
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their simultaneous probability density is 

 P(p) = P(p1, p2, …, pM) = P(p1) P(p2) … P(pM). (6) 

After the corresponding calculations, one obtains 

(7) 
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Taking into consideration the difference vector 
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the covariance matrix Cp for the geoelectric model parameters, 
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and the inverse of this matrix (Cp
-1 = Wp = parameters weighting matrix), the 

probability density for the unknown parameters of the geoelectric model, described 
by equation 7, becomes 
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or, in a symbolic notation, 
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The vector of discrete apparent resistivity data y may be written as 

 y = f(p) + n, (12) 

where f(p) is the vector of theoretical values corresponding to the adopted 
geoelectric model and n = n1, n2, …, nN represents the noise which may affect the 
observational data and/or the theoretical estimation errors. Considering that the 
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errors n are independent of f(p) and characterized by a probability density Pn, the 
conditional probability density P(y|p), or the likelihood function, is 

 P(y|p) = Pn(y – f(p)). (13) 

If the errors associated with the measured apparent resistivity values have 
zero mean and a covariance matrix 
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the probability density of the errors vector may be symbolically expressed as 
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where the inverse Cy
-1 = Wy may be regarded as a data weighting matrix. Taking 

into account expression 13, the likelihood function becomes 
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Therefore, the numerator of expression 2 takes the form 
(17) 
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Maximizing the a posteriori probability density P(p|y) reduces to maximizing 
the expression 17, which leads to minimizing its exponent. Consequently, the 
objective function to be minimized may be written in matrix notation as 

  ))((1))(()(1)()( pfyCpfypCpp −−−+−−−= y
T

pp
T

pE µµ       minimum (18) 

and, after the necessary substitutions, 
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The objective function represented by expression 19 is linearized using a 
Taylor series expansion around an initial estimate p0 of the unknown parameters 
vector, retaining the first and second order terms of the expansion. After 
computation of the partial derivatives of the objective function with respect to the 
parameters p of the geoelectric model and cancellation of the derivatives, the 
minimization equation is obtained as  

 H ∆p = - g, (20) 

where H is the Hessian matrix of second order partial derivatives of the objective 
function with respect to model’s parameters, g is the gradient vector containing the 
first order derivatives of the objective function and ∆p is the parameters update 
vector, representing the solution of the inverse problem. 

The elements of the gradient vector are 
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Carrying out the corresponding calculations, the following equations are 
obtained: 
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Taking into consideration the Jacobian matrix containing the first order 
derivatives of the formal functional relationship f(p) (the forward model, 
describing the theoretical response of the geoelectric model) with respect to the 
unknown parameters p, 

 J = 











































∂
∂









∂

∂








∂

∂









∂
∂









∂
∂









∂

∂









∂
∂









∂
∂









∂
∂

00201

0

2

02

2

01

2

0

1

02

1

01

1

)(
...

)()(
.
.
.

.

.

.

.

.

.

.

.

.

)(
...

)()(

)(...)()(

M

NNN

M

M

p
f

p
f

p
f

p
f

p
f

p
f

p
f

p
f

p
f

ppp

ppp

ppp

, (24) 

and defining the vector of differences between the mean values µp of the model’s 
unknown parameters and their estimated values p0, 
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the gradient vector takes the form 

 [ ])())((2 011 pCpfyCJg −+−−= −−
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or 
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where the covariance matrices Cp and Cy are given by the expressions 9 and 14 and 
∆y is the residual vector storing the differences between the measured apparent 
resistivity values and the theoretical ones, computed via forward modeling for a 
current geoelectric model: 
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The elements of the Hessian matrix are 
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After the necessary calculations, the following equations are derived: 
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Considering the expressions of the matrices Cp, Cy and J from 9, 14 and 24, 
the Hessian matrix takes the form 

 [ ]112 −− += py
T CJCJH  (33) 

or 

 [ ]py
T WJWJH += 2 . (34) 

The initial optimization equation, after substituting the expressions 26 and 33 
or 27 and 34, becomes 
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Finally, the update vector for the unknown parameters of the geoelectric 
model may be determined from the matrix equations 
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If the mean of the probability distribution for the geoelectric model 
parameters (µp) coincides with their estimated values (p0), the update vector turns 
into 
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T

py
T 1−

+= . (40) 
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It should be noted that the probabilistic inverse modeling of apparent 
resistivity data requires the computation of matrices J and JT and the selection of 
covariance matrices Cp and Cy, whose inverses Cp

-1 = Wp and Cy
-1 = Wy function as 

weighting matrices during the inversion. Due to the linearization of the objective 
function E(p) through a truncated Taylor series, equations 39 or 40 are solved 
iteratively. In each iteration the global fitting error of the observational data is 
minimized, the parameters update vector ∆p is computed and a new set of 
parameters p is determined by correcting the previous ones, i.e., p = p0 + ∆p. The 
iterative process which leads to the determination of an optimal geoelectric model 
is continued until the global fitting error reaches a minimum or falls below a user-
imposed tolerance. 

The ∆p solution from equations 39 and 40 represents a very general 
maximum a posteriori estimation (MAP), which may take particular forms 
depending on the proper selection of the matrices Cp and Cy or the corresponding 
weighting matrices Wp and Wy. If Cp and Cy are diagonal, with Cy = σy

2 I and Cp = 
σp

2 I (where I denotes the identity matrix) and σp = ∞, a standard least-squares 
minimization algorithm is obtained, 

 ))((1)( pfyJJJp −−= TT∆ , (41) 

the infinite variance of the geoelectric model’s parameters meaning the absence of 
a priori information about them. 

For any Cy matrix, if Cp = σp
2 I with σp = ∞, a maximum likelihood estimator 

(MLE) is derived as 

 ))((11)1( pfyCJJCJp −−−−= y
T

y
T∆ . (42) 

In this case, the a priori information about the model parameters is also 
missing, but the distribution of errors which affect the measured values is known. 
If Cy matrix is diagonal, the MLE estimator reduces to a weighted least-squares 
algorithm. 

It is important to emphasize that the optimal geoelectric model p resulted from 
the inversion of apparent resistivity data is not unique, but largely depends on the 
estimation of an initial, sufficiently correct, model p0. The fundamental ambiguity of 
inverse geophysical modeling also arises in the case of borehole apparent 
resistivity logs inversion, so the selection of an erroneous initial model may lead to 
convergence problems and, also, to a final solution which is substantially different 
with respect to the real geoelectric model. The advantage of a Bayesian 
probabilistic approach, using parameters and data covariance matrices along with a 
suitable inversion algorithm, is represented by the possibility to determine the 
"most probable" geoelectric model, if adequate probability distributions are 
selected for the observational data and the model parameters. 
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2.2 PRACTICAL IMPLEMENTATION OF THE PROBABILISTIC INVERSION ALGORITHM 

The presented inverse modeling method was implemented through a complex 
software which is applicable for apparent resistivity datasets recorded with 
standard two or three electrodes logging devices, in various configurations (ideal 
normal device AM, real normal device AMN, ideal lateral device AMN (MN → 0) 
and real lateral device AMN (MN ≠ 0), where A is the current electrode and M, N 
are the potentials measuring electrodes). The geoelectric model used (Fig. 1) is 
represented by multilayered media with planar-parallel separation interfaces and 
electrically homogeneous and isotropic individual layers, without taking into 
account the effect of borehole’s mud column or the resistivity’s lateral variations 
due to the mud filtrate invasion in porous-permeable layers. The bucking electrode 
B of the logging devices is considered infinitely remote and the first and last layers 
of the model are assumed infinitely extended. 

 
Fig. 1 – Multilayered geoelectric model used by the probabilistic inversion 
algorithm. A – current electrode; M – potential measuring electrode; ρi, hi – layer 
resistivities and thicknesses; zi – vertical distances between the current electrode 
and the separation interfaces. The cylindrical coordinates system [r, z, Ψ] is 
employed by the forward modeling component of the algorithm to compute the 
potentials and the theoretical apparent resistivity (radial distance r is zero in the case 

of borehole electric logging devices). 
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One of the main components of the elaborated inversion software is a forward 
modeling algorithm (Niculescu, 2002, 2006) used to compute the theoretical apparent 
resistivity response vector f(p,x) of a particular logging device, for the selected 
geoelectric interpretation model. The algorithm finds a solution of the Laplace 
equation for the electric field’s potential in cylindrical coordinates, by constructing 
a fundamental system of boundary conditions (potential’s continuity across the 
separation interfaces and continuity of the current’s density normal component, in 
addition to particular conditions for the potential near the current source and at 
infinity). The system is solved via a fast Gaussian elimination routine, in order to 
determine a set of kernel coefficients a(λ) and b(λ) which appear in the general 
integral expression of the potential, then the potentials of the measuring electrodes, 
along with the corresponding apparent resistivity, are computed using a first degree 
(trapeze) or second degree (Simpson) numerical quadrature procedure. 

During the iterative inversion process, the elements of the Jacobian matrix J 
(the sensitivities of the forward modeling algorithm f(p,x) with respect to the 
geoelectric model parameters) are computed through numerical differentiation, in 
each iteration and for each unknown parameter p the theoretical response of the 
model being evaluated twice, by imposing a sufficiently small ± variation for the 
respective parameter around its current value. The amplitude of parameters numerical 
variations, expressed as percents of their current values, is selected by the user, 
smaller variation bounds meaning a more precise evaluation of the partial derivatives. 
After computing the elements of the Hessian matrix H, the gradient vector g and 
the misfit vector ∆y, matrix H is inverted and the parameters update vector ∆p is 
determined, gradually optimizing the initial interpretation model p0. Inversion’s 
convergence is tested in each iteration, the process ending after minimizing the root 
mean square data fitting error or reaching a user-imposed number of iterations. 

The uncertainties of the geoelectric model’s parameters as well as the 
apparent resistivity data uncertainties (the elements of Cp and Cy matrices) are 
provided as constant or variable standard deviations of the corresponding quantities, 
leading to different optimization modes for the inversion algorithm, which may 
function as a standard least-squares or ridge regression procedure, a maximum 
likelihood one or as a very general Bayesian method. The selection of a specific 
inversion mode strongly influences the results and allows the determination of 
realistic geoelectric models, taking into consideration the noise which may affect 
the recorded data and/or the variable degree of knowledge of the model parameters. 

3. CASE STUDIES AND RESULTS 

The applicability of the borehole apparent resistivity inversion software will 
be illustrated by means of several case studies which use a theoretical geoelectric 
model and synthetic datasets representing its response. The model comprises 3 
separation interfaces and 4 layers, with the first and last layer infinitely extended, 
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the corresponding parameters (depths zi of the separation interfaces and true 
resistivities ρi) being mentioned in Table 1. 

Table 1 

Layered model used for testing the inversion algorithm 

h1 
(m) 

h2 
(m) 

h3 
(m) 

ρ1 
(Ωm) 

ρ2 
(Ωm) 

ρ3 
(Ωm) 

ρ4 
(Ωm) 

2 3 5 2 10 5 8 

The theoretical response of this model, with a conventional vertical extent of 
7 m, was determined through forward modeling for an ideal normal logging device 
with AM = 0.2 m length, using a 0.2 m depth sampling step and a 10-6 precision for 
the Simpson numerical quadrature involved in the electric field’s potentials and 
apparent resistivity computations. The resulted apparent resistivity curve (Fig. 2) 
was considered observational data and used as input for the inversion algorithm. 

 
Fig. 2 – Configuration of the true geoelectric model used for testing the probabilistic inversion 

algorithm and its theoretical effect corresponding to an ideal normal device AM = 0.2 m. 

If some of the geoelectric model parameters are already known, from 
geological data or the interpretation of electric logs, this may be taken into account 
in order to avoid the modification of parameters values during the inversion. In the 
first case, it was assumed that the separation interfaces depths may be determined 
by analyzing the apparent resistivity curves and, consequently, this a priori 
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information was incorporated, the inversion algorithm being used to determine 
only the true resistivities. The adopted initial interpretation model has correct depth 
values and erroneous resistivity estimates, the chosen standard deviation for all zi 
parameters was σp = 0.001, while for the ρi parameters σp = 1 standard deviations 
were used. The covariance matrix of the observational data was chosen as diagonal, 
Cy = σy

2 I, with σy = 0.001, the inversion method being a MAP one. 
Table 2-a presents the results of the first 5 inversion iterations and Table 2-b 

shows the estimation errors for the parameters of the initial and final geoelectric 
models. The values in square brackets from Table 2-a – iteration "0" are referring 
to the parameters which are not allowed to change during model optimization, eRMS 
is the root mean square data fitting error and eMR is the mean relative data fitting error. 

Table 2-a  

Results of the probabilistic inversion of apparent resistivity data corresponding to an ideal 
AM = 0.2 m normal device (depths of the separation interfaces are assumed known a priori) 

Geoelectric model’s parameters 
Iteration h1 

(m) 
h2 

(m) 
h3 

(m) 
ρ1 

(Ωm) 
ρ2 

(Ωm) 
ρ3 

(Ωm) 
ρ4 

(Ωm) 

eRMS 
(Ωm) 

eMR 
(%) 

0 [2] [3] [5] 1 9 4 9 0.985 24.598 
1 2.000 3.000 5.000 1.934 9.650 4.880 8.198 0.145 2.586 
2 2.000 3.000 5.000 1.954 9.672 4.911 8.207 0.135 2.138 
3 2.000 3.000 5.000 1.954 9.672 4.911 8.207 0.135 2.139 
4 2.000 3.000 5.000 1.954 9.672 4.911 8.207 0.135 2.139 
5 2.000 3.000 5.000 1.954 9.672 4.911 8.207 0.135 2.139 

Table 2-b  

Parameters estimation errors corresponding to the initial and final models from Table 2-a 

Parameter h1 h2 h3 ρ1 ρ2 ρ3 ρ4 
Initial estimation error 

(%) 0.000 0.000 0.000 50.000 10.000 20.000 12.500 

Final estimation error 
(%) 0.000 0.000 0.000 2.312 3.279 1.787 2.593 

The results of the optimization process show that the obtained models are 
progressively matching the true geoelectric model from Table 1, interfaces depths 
being unaltered in each iteration. The initial mean relative data fitting error of 
about 25% was reduced to 2% in iteration 2, inversion’s convergence being very 
fast and stable around the optimal solution. It is possible to further reduce the final 
estimation errors for the model resistivities, by using larger variation bounds (i.e., 
larger σp standard deviations) for these parameters. Figs. 3-a and 3-b present the 
initial geoelectric model, the final model resulted from inversion and the theoretical 
effects of the models, in comparison with the observational data. 
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Fig. 3-a – Estimated geoelectric model (depths of the separation interfaces are 
assumed known a priori), its theoretical effect and the observational data 
corresponding to an ideal normal device AM = 0.2 m. The initial mean 

relative data fitting error is 24.6%. 

 
Fig. 3-b – Optimal geoelectric model resulted from the probabilistic 
inversion, its theoretical effect and the observational data corresponding 
to an ideal normal device AM = 0.2 m. The final mean relative data fitting 

error is 2.1%. 
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The probabilistic inversion algorithm was also tested in the hypothesis of 
available a priori information about some of the model resistivities. By analyzing 
the theoretical response of the normal AM = 0.2 m device, it is easily seen that the 
true resistivities for layers 1, 3 and 4 can be estimated from the dataset itself. 
Consequently, an initial interpretation model was selected for which these 
resistivity values were assumed known, then the model was optimized without 
altering them. Standard deviations of σp = 0.001 were used for the resistivities of 
layers 1, 3 and 4, the rest of the model parameters having assigned σp = 1 standard 
deviations. The covariance matrix of the observational data was chosen as 
diagonal, Cy = σy

2 I, with σy = 0.001, the inversion operating in MAP mode. 
Table 3-a presents the first 8 iterations of the optimization procedure. The 

values in square brackets, in iteration "0", are referring to the parameters which are 
assumed known and not allowed to change. It may be observed that the inversion 
algorithm has improved the initial interpretation model, the mean relative data fitting 
error eMR being reduced from about 15% to 1% in 5 iterations. The convergence rate 
was a bit slower with respect to the previous case, the model parameters and the 
associated estimation errors becoming stable in iteration 5. Further iterations did not 
refine the model, but the estimation errors can be reduced even more by specifying 
larger variation bounds for the unknown parameters. The resistivities of layers 1, 3 
and 4 were practically unaltered, due to the very small a priori variances associated 
to them. On the other hand, it should be emphasized that the algorithm uses Gaussian 
probability densities, not uniform ones, so it is possible that the values of a priori 
known parameters might be slightly changed during the inversion. 

Table 3-b shows the initial and final estimation errors for the geoelectric 
model parameters, the final model being substantially improved. The negligible 
altering of some parameters for which correct starting values were estimated (depth 
of interface 2 and resistivity of layer 4), without imposing hard constraints, is a 
specific effect of any automatic interpretation algorithm which tries to find a global 
optimal solution. Figs. 4-a and 4-b present the initial and final geoelectric models, 
as well as their theoretical effects in comparison with the observational data. 

A final example of automatic interpretation by means of probabilistic inverse 
modeling concerns the processing of apparent resistivity logs affected by 
geological noise. For this purpose, the observational data represented by the normal 
AM = 0.2 m device response were contaminated with a pseudorandom noise of ± 
10% amplitude. Fig. 5-a shows the estimated geoelectric model, its theoretical 
effect and one of pseudorandom datasets. Diagonal covariance matrices were used 
for processing, Cy = σy

2 I and Cp = σp
2 I, with σy = 0.1 and σp = 1. In this case, the 

probabilistic inversion algorithm behaves like a ridge regression one (Levenberg, 
1994; Marquardt, 1963), the ratio k = σy / σp measuring the relative importance of 
the information provided by the data in comparison with the a priori information 
about the model parameters. 
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Table 3-a 

Results of the probabilistic inversion of apparent resistivity data corresponding to an ideal 
AM = 0.2 m normal device (some of the model resistivities are assumed known a priori) 

Geoelectric model’s parameters 
Iteration h1 

(m) 
h2 

(m) 
h3 

(m) 
ρ1 

(Ωm) 
ρ2 

(Ωm) 
ρ3 

(Ωm) 
ρ4 

(Ωm) 

eRMS 
(Ωm) 

eMR 
(%) 

0 1.5 3 5.5 [2] 8.5 [5] [8] 1.129 14.910 
1 1.579 3.280 5.149 2.000 7.104 5.000 8.079 0.825 10.046 
2 1.992 3.117 5.073 2.000 8.119 5.000 8.081 0.381 2.520 
3 1.948 3.086 5.018 2.000 9.089 5.000 8.081 0.155 1.420 
4 1.954 3.068 5.013 2.000 9.175 5.000 8.081 0.133 1.218 
5 1.955 3.048 5.012 2.000 9.211 5.000 8.081 0.125 1.126 
6 1.954 3.054 5.012 2.000 9.196 5.000 8.081 0.127 1.155 
7 1.955 3.051 5.012 2.000 9.204 5.000 8.081 0.126 1.138 
8 1.955 3.052 5.012 2.000 9.202 5.000 8.081 0.126 1.143 

Table 3-b 

Parameters estimation errors corresponding to the initial and final models from Table 3-a 
Parameter h1 h2 h3 ρ1 ρ2 ρ3 ρ4 

Initial estimation error 
(%) 25.000 0.000 10.000 0.000 15.000 0.000 0.000 

Final estimation error 
(%) 2.251 1.602 0.239 0.000 7.890 0.000 1.010 

 
Fig. 4-a – Estimated geoelectric model (some of the model resistivities are 
assumed known a priori), its theoretical effect and the observational data 
corresponding to an ideal normal device AM = 0.2 m. The initial mean 

relative data fitting error is 14.9%. 
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Fig. 4-b – Optimal geoelectric model resulted from the probabilistic 
inversion, its theoretical effect and the observational data corresponding 
to an ideal normal device AM = 0.2 m. The final mean relative data fitting 

error is 1.1%. 

 
Fig. 5-a – Estimated geoelectric model, its theoretical effect and the 
observational data (± 10% pseudorandom noise added) corresponding to 
an ideal normal device AM = 0.2 m. The initial mean relative data fitting 

error is 20.9%. 
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Fig. 5-b – Optimal geoelectric model resulted from the probabilistic 
inversion, its theoretical effect and the noisy observational data corresponding 
to an ideal normal device AM = 0.2 m. The final mean relative data fitting 

error is 11.3%. 

Table 4-a illustrates the optimization of the initial geoelectric model, 
described by iteration "0". Due to the noise, the final data fitting errors were larger 
than in the previous cases, the initial mean relative error eMR of about 21% being 
reduced to 11% in 3 iterations, when convergence was obtained. Table 4-b presents 
the parameters estimation errors for the initial and final models, with respect to the 
true parameters from Table 1. It may be observed that the inversion has 
considerably optimized the initial model, justifying the use of such probabilistic 
algorithms for the interpretation of real electric logs affected by the inherent 
geological noise. Fig. 5-b presents the optimal geoelectric model resulted from 
inversion and the noisy data fitting by the model theoretical response. 

The Cy and Cp matrices used in the probabilistic inversion algorithm are, in 
fact, covariance matrices, their diagonal elements storing the variances 
(dispersions) of the probability densities assigned to observational data and, 
respectively, the model parameters. The diagonal character of these matrices is 
justified by the lack of any correlation between different data samples or between 
the model parameters. 
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Table 4-a  

Results of the probabilistic inversion of apparent resistivity data corresponding to an ideal 
AM = 0.2 m normal device (± 10 % pseudorandom noise added to data) 

Geoelectric model’s parameters 
Iteration h1 

(m) 
h2 

(m) 
h3 

(m) 
ρ1 

(Ωm) 
ρ2 

(Ωm) 
ρ3 

(Ωm) 
ρ4 

(Ωm) 

eRMS 
 (Ωm) 

eMR 
 (%) 

0 1.5 3 5.5 1.5 8.5 4.5 8.5 1.275 20.929 
1 1.536 3.244 5.329 1.549 7.189 5.507 8.252 0.930 15.066 
2 1.773 2.496 5.133 1.562 7.707 5.232 8.342 0.976 13.553 
3 2.145 2.927 5.245 1.896 9.278 5.601 8.383 0.741 10.318 
4 2.129 2.983 5.256 2.210 10.491 5.247 8.401 0.624 11.320 
5 2.154 2.980 5.249 2.225 10.688 5.237 8.393 0.624 11.373 
6 2.121 2.993 5.259 2.202 10.350 5.245 8.451 0.626 11.323 
7 2.159 2.985 5.244 2.234 10.697 5.195 8.394 0.625 11.466 
8 2.114 2.999 5.255 2.199 10.240 5.244 8.399 0.626 11.316 

Table 4-b  

Parameters estimation errors corresponding to the initial and final models from Table 4-a 

Parameter h1 h2 h3 ρ1 ρ2 ρ3 ρ4 
Initial estimation error 

(%) 25.000 0.000 10.000 25.000 15.000 10.000 6.250 

Final estimation error 
(%) 5.717 0.029 5.099 9.981 2.401 4.875 4.997 

4. CONCLUSIONS 

An inverse modeling method based on a maximum generality Bayesian 
approach is proposed as a technique for the interpretation of conventional borehole 
apparent resistivity logs. The algorithm uses multilayered interpretation models 
with planar-parallel separation interfaces, being able to considerably improve an 
initial estimate of the true geoelectric model by taking into account the available a 
priori information related to the model parameters or the measured data, as well as 
the random geological noise. 

One of the probabilistic inversion’s advantages is represented by the 
flexibility of selecting the initial geoelectric model of the formations crossed by a 
borehole. In this respect, the inversion’s convergence may be obtained through a 
convenient choice of the model parameters covariance matrix Cp, if no a priori 
information is available. During the optimization, if abnormal values are obtained 
for some parameters the process can be restarted after changing their corresponding 
standard deviations, which may lead to convergence and a final solution which is 
very close to the true geoelectric model. Another advantage consists in the 
possibility of incorporating, in a probabilistic way, physical or dimensional 
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constraints regarding the model parameters, in order to avoid final interpretation 
models which are unrealistic from a physical or geological perspective. 

The efficiency of the elaborated inverse modeling software has been 
demonstrated through several examples, but its application possibilities are much 
more extended and able to cover complex geological situations. Although the 
software was especially designed for the inversion of conventional borehole 
apparent resistivity logs, the mathematical and numerical algorithm may be used 
for the automatic interpretation of any kind of geophysical data, by suitable 
modification of the f(p,x) forward modeling component. 
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