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L’évaluation spectrale des signaux microséismiques. Les signaux microsismiques sont 
considérés les oscillations de faible intensité du sous-sol qui sont induites 
naturellement et qui peuvent être enregistrées à la surface du sol à n’importe quel 
moment. Pour étudier la structure et les paramètres mécaniques du sous-sol, les 
signaux microsismiques sont d’habitude analysés d’après leur spectre d’amplitude 
dans un domaine donné des fréquences. Ainsi, l’évaluation spectrale des signaux 
microsismiques qui sont enrégistrés dans un certain point du sol s’avère une opération 
importante dans la prospection sismique. On présente une méthodologie de stabilisation 
statistique et d’évaluation numérique du spectre de fréquence microsismique par 
l’utilisation d’un algorithme de décomposition DFT (Discrete Fourier Transform) qui 
peut réduire le nombre des échantillons de fréquence par rapport au nombre 
d’échantillons de temps des signaux enrégistrés. On présente la déduction analytique 
de la méthodologie et l’application à un exemple aux données réelles.  

Key words: microseismic survey, signal, amplitude spectrum, statistical and numerical 
evaluation. 

INTRODUCTION 

Gorbatikov et al. (2004) presented a number of experimental results to 
demonstrate the application of the microseismic sounding method to a number of 
typical geological problems in the oil and gas industry and diverse geological 
structures. The distribution of microseism amplitudes was measured for various 
frequencies in the range between several hundredth parts of Hz and several Hz in 
reference areas located on the surface just above the investigated structures. Each 
case revealed that the structures with higher seismic velocities appeared on the 
surface as zones with decreased values of spectral amplitudes, whereas structures 
with lower seismic velocities appeared as areas with increased spectral amplitudes. 
This method of microseismic sounding implies calculation and observation of 
spectral relations between the reference and studied site.  
                                                           
* Paper presented at the 68th EAGE Conference, Vienna, 2006. 
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Other microseismic methods include the direct interpretation of the Fourier 
spectra (Katz and Bellon, 1978) or the determination of spectral relations between 
horizontal and vertical spatial components (Nakamura, 1989). For this reason, the 
spectral evaluation is a very important operation in processing of microseismic 
signals. Using a digital signal processing technique known as “Periodogram” 
aimed at the estimation of the power spectral density of a time series (see, for 
example, Oppheneim and Schafer, 1975), we describe a methodology for the 
statistical stabilization and numerical evaluation of microseismic spectra.  

EVALUATION AND STABILIZATION OF MICROSEISMIC SPECTRA 

A microseismic signal recorded at a point on the Earth’s surface can be 
considered as a stationary random process. A random process is represented by a 
function of two real parameters sk(t), where k takes all the values of integer 
numbers and t takes all the values on the time axis. For t = t1 we obtain sk(t1) which 
is a random variable defined on the space of k integers. For a fixed value of k, sk(t) 
is a deterministic signal that represents “a particular realization” of the random 
process. A particular realization sk(t) of  the  random process is not a signal of finite 
energy; therefore it does not have a spectrum. For this reason we consider the 
truncated particular realization sk,T(t) equal to sk(t) for 2/Tt ≤  and equal to zero 

for .2/Tt >  The Parseval theorem for the deterministic signal sk,T(t) can be written 
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where Pk,T represents the power of the signal sk,T(t) and the function │Sk,T(f)│2/T  
represents a spectral characterization of this truncated particular realization. But for 
the derivation of a spectral characterization of the random process in its ensemble it 
is necessary to make a statistical average. For this reason we define the average 
power of the truncated random process as being the statistical average (relating to 
parameter k) of powers Pk,T by 
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For the elimination of the effect of truncation we define the average power of 
the random process as being 
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where )f(q is the spectral density of power of the random process. This means that 
for T we have to take a large enough value. 

If the random process is stationary, then in the above equations we can 
consider the interval [0, T) instead of the interval (-T/2, T/2]. 

A microseismic signal recorded at a point on the Earth’s surface can be 
described as a stationary random process whose particular realizations sk(t) ≈ sk,T(t) 
are microseismic signal fragments recorded on the intervals [(k-1)T, kT) with T 
large enough and k equal to 1, 2,..,K.   

For the evaluation of the amplitude spectrum of the random process which 
represents the microseismic signal we compute the Fourier transforms of its 
particular realizations by the formula  

 .dte)t(s)f(S ft2iT
0 T,kT,k
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Then we stack the K power spectra and obtain the average of these power 
spectra  
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The microseismic amplitude spectrum, which will be analyzed for the 
investigation of geological structures, is 
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The minimum value of K is determined by a statistical stabilization of the 
average power of the random process.  

With the formula 
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we can compute the average power PK,T. The frequencies f1 and f2 in this formula 
define the band region of the useful microseisms, which usually are represented by 
Rayleigh waves. We consider that K is the minimum value for which the average 
power PK,T is relatively constant (stabilized) if for every K’>K we have 

 ,PP 1T,KT,'K ε<−  (7) 

where ε1 is an accepted error. Certainly, PK≈PK,T if T is large enough. 
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NUMERICAL EVALUATION OF SPECTRA FOR MICROSEISMIC FRAGMENTS  
OF LARGE LENGTH 

A microseismic signal fragment has a very large length. For numerical 
evaluation of its Fourier transform (see the equation (4)) we use the decomposition 
DFT algorithm (Sorensen, Burrus, 1993) which uses the fact that fewer frequency 
samples than time samples are needed. We consider that the signal fragment sk,T(t) 
is represented by M time samples and its frequency spectrum Sk,T(f) is represented 
by N samples, where M = RN with N = 2p.  

For numerical spectral evaluation of a band-limited W signal fragment sk,T(t) 
we use the Shannon sampling theorem (see, for example, Jurry, 1977) and the 
decomposition DFT algorithm to obtain 
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which is the DFT of the time series sk,T(rN∆t), sk,T((rN+1)∆t), sk,T((rN+2)∆t),..., 
sk,T((rN+N-1)∆t). When N = 2p this DFT can be efficiently evaluated by a FFT 
algorithm. 

Therefore, the N frequency samples of the spectrum Sk,T(f) of the signal 
sk,T(t), which is represented by M = RN time samples, can be obtained in the 
following way. Using a FFT algorithm with the length of N = 2p we evaluated the 
DFTs of the R series of type (9), which are then added up term by term. Following this, 
every term of the obtained series has to be multiplied by the sampling interval ∆t.  

Taking into consideration the equations (4), (4’), (5), (8), (9) and the fact that  

 T=M∆t (10)  

we obtain the discrete form of the equation (6)  
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In (6’) we can see that for the numerical evaluation of the amplitude spectrum 
of a microseismic signal we have to take into consideration the number of 
particular realizations K, the sampling interval ∆t and the number of samples of 
particular realizations M.  

REAL DATA EXAMPLE 

Using a microseismic data set, which was recorded at a point on the Earth’s 
surface in a time interval of over 8 hours with the sampling interval ∆t = 1/70≈0.014 s, 
we illustrate the methodology for the evaluation of microseismic spectra by the 
following examples. In Fig. 1 we represent a microseismic signal fragment sk,T(t) 
recorded on the interval [0,T) with T=3.65 s. In Fig. 2 we show the amplitude 
spectrum )f(S  of a microseismic signal fragment sk,T(t). This signal was recorded 
on the interval [0,T) with T = 585.14 s and the number of samples M = 40960. For the 
spectral evaluation of this signal we used the decomposition DFT algorithm with 
N = 4096 and L = 10. The Nyquist frequency is 35 Hz and ∆fN = 70/4096 = 0.017 Hz. 
In Fig. 3 we represented the amplitude spectrum )f(S . It was obtained by stacking 
K=45 power spectra corresponding to 45 microseismic signal fragments sk,T(t) 
which are recorded on the intervals  [(k-1)T, kT), where k is equal to 1, 2,...., K. 
The length of a fragment T = M∆t≈585.24 s, with M = LN, L=10 and N = 4096. 
Certainly, for the computation of the power spectra the decomposition DFT 
algorithm was used. The Nyquist frequency W=35 Hz and ∆f = 70/4096 = 0.017 Hz. It 
was considered that the band region of the useful microseisms is defined by f1=0 Hz 
and f2 = 0.769 Hz.  

 
Fig. 1 – A microseismic signal fragment sk,T(t) recorded on the interval [0,T) with T = 3.65 s. 
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Fig. 2 – The amplitude spectrum )f(S  of a microseismic signal fragment sk,T(t), 

which was recorded on the interval [0,T) with T = 585.14 s and with the number of samples M = 40960. 

 

Fig. 3 – The amplitude spectrum )f(S  obtained by stacking K = 45 power spectra corresponding 

to 45 microseismic signal fragments sk,T(t) which were recorded on the intervals [(k-1)T, kT], 
where k is equal to 1, 2,...., K. The length of a fragment T = M∆t≈585.24 s with   M = 40960. 

CONCLUSIONS 

We have considered that a microseismic signal recorded at a point on the 
Earth’s surface can be described as a stationary random process and have presented 
a methodology for the statistical stabilization and numerical evaluation of its 
spectrum by stacking power spectra of microseismic signal fragments. Besides 
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showing the analytical derivation of algorithms, we have shown an application to a 
real data example. 

This paper can been also considered as a mathematical background review of 
microseismic spectral evaluation. 
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