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In order to determine the seismic effects in superficial layers of the earth taking into 
account their nonlinear constitutive behavior, specific wave equations for longitudinal 
and transversal propagations are deduced. Following approximations schemes 
previously enounced by the first author, which furnish effective solutions 
corresponding to a layered half-space as well as correlations between surface effects 
(displacements and stresses) and the dislocational mechanism of sources located in 
ground layer, in the present paper the amplification effect for a layered half-space 
with nonlinear behavior of the surface layer is analyzed. The results are in good 
agreement with observational data and consist in specific new effects: the existence of 
very well defined directivity curves and of almost punctual regions with focusing 
effects, their dependence on focal mechanism, deep rocks structure and wave 
superposition, the importance of constitutive laws, the nonlinearity of soft surface 
soils and of multiple wave overlapped simultaneously with increasing fundamental 
frequency. These facts are pointing out the correlation between nonlinearity and 
directivity and are encouraging the efforts for a new approach in viscous-plastic and 
fissional rocks behavior. 
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1. INTRODUCTION 

The nonlinear and viscoelastic behavior of layers at earth surface may 
sensibly alter the already determined seismic maps which represent the isoseistic 
lines associated to earthquakes and obtained theoretically only in the frame of a 
linear elastic analysis. The aimed analysis of this paper is based on the previously 
developed scheme of approximation of the author (Mişicu, 1953) that according to 
subsequently published monographic works (Doyle, Ericksen, 1959) presents a 
very general character. We mention that other different procedures were also 
elaborated as for instance the one proposed by Signorini (Signorini, 1936). 
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Accordingly, the corresponding corrections regard the intensity of seismic effects 
as well as the associated distribution and directivity. We resort to the following 
constitutive and dynamic equations  
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The coefficients λ and µ are assumed to be polynomials of, respectively, 
dilatation and second order invariant of strain 
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A more general Ansatz consists in the assumption that the considered moduli 
are function of both invariants θ,γ. We also account for the distortion function and 
the rotation 
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The replacement of the stress tensor furnished by the first equation from (1) 
into the second one leads to the differential equation of motion  
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in which occur the terms (the moduli λ µn n,  being assumed constant) 
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2. APPROXIMATE SOLUTIONS OF WAVE EQUATIONS 

Following the approximation schemes exposed in Mişicu (1953) and 
Signorini (1936) we consider the following expansions 
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e being a small parameter (<1). Consequently, the dilatation and strain invariant 
may be n expanded as follows: 
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fact which involves the additional developments for elastic moduli 
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the last one being approximated for G < 1 by the function 
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for γ γ γ γ γ γ1 11 2 11 12 11
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Accordingly the associated approximated differential equations which may 
be derived by identifying terms of identical order (Mişicu, in press) were obtained 
from the equations for dilatational and rotational waves 
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3. GENERAL NONLINEAR SH PLANE WAVES  
OF THE FIRST APPROXIMATION 

Making use of the linear solutions of the first equation given by (13), which 
correspond to SH waves satisfying the conditions u u u11 13 120 0= = ≠, , we get 

2/,2/ 1,121123,12123 uu =−= ωω , 0131 =ω  so that the equation reduces 

to: 012
2

12 =−∆ − uu &&β  where  ρµβ /0
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Here k = ω β/  , f  is the incidence angle between the normal to the waves 
front and the vertical axis and u’ and u” are the coefficients of the linear solutions. 
We denote by fc sin/β=  the horizontal phase velocity.  The corresponding 
deviatoric invariant is 
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If the waves front includes only ascendent components ( ′ ≅u 0) then: 
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whereas for the descendent one ( ′′ =u 0) : 
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For an angle f ≅ 0, π  relation (16) becomes: 
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We stress together the listed relations as: 
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We observe that this relation may be regarded as an independent definition of 
the invariant which occurs in the constitutive equations and not as an approximated 
quantity. In this sense the respective fitness has to be checked directly with the 
experimental data. Besides we also stress the fact that the last relation appears as valid 
for the above mentioned cases, i.e. for regions where only ascendent or descendent 
waves are important or for front orientations horizontal or vertical. More complete 
approximations may be yielded as follows. Relation (16) may be put under the form  
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which emphasizes the fact that in regions where "' uu << (with predominant 
ascendent waves) we have 
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Analogously for "' uu >>  follows the approximation 
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From the applicative point of view ascendent waves correspond to incipient 
fronts arriving for instance at the earth surface and descendent ones to final fronts 
after refractions and reflexions at the same surface. Hence we get from the first 
relation from (6) in the case of purely transversal waves the expressions 
corresponding to the invariant (16) 



26 M. Mişicu et al. 6 

 

 E21 = ][ 13,1213,121,1211,12121,120 uuuuuu ++∆µ = 

 )sin2.[sin2 2222223
0 fuueueufeki iii ′′′+′+′′ − ςςξµ    

 ][ 3,123,11,121,1121122 uuuE γγγµ ++∆= =                         (24) 

 ]sin)([ 2222223
1 fuubaeubeuaeki iii ′′′++′+′′ − ςςξµ  

 
].[cos2

][
222223

0

3,1233,121,1231,12123,12023

ςςξµ

µ
iii eueufeki

uuuuuuE
−′−′′−

=++∆=
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The last equation is not relevant being reducible to the similar one from (13). 
We take into account the solution: 
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Eq. (27) furnishes the conditions:        
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We observe that the effective displacements are ...,1211 ++= vvv  
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4.  WAVE PROPAGATION IN A LAYER WITH FREE SURFACE 

We consider a layer zd ≤≤0 with a non-loaded surface z = 0. Meanwhile at 
the interface z = d no arriving ascendent front waves with frequency 2ω do occur. 
For this reason we have to cancel the terms containing e -2iζ in the solution (27). 
Hence we have the conditions: 
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We yield the solution: 
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In order to obtain the amplification effects amplitudes due to nonlinearity 
compared with the linear amplitudes we take into account the ratio "/22 uuK = for 

0=z  which expresses the increment of displacement values of ascendent waves at 
the basis of the superficial layer (corresponding to already amplified effects 
through the linearly behavior of deeper rocks).  We resort to the notations (T stands 
for the oscillation period).  
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We obtain the expression  
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The last results may be further used for effective calculations taking into 
account the occurring parameters denoted above. We mention the fact that since the 

linear theory furnishes the expressions θε θ tg,
21

21 ieD
D

D
=

+
−= , fact which 

reduces the number of parameters. We observe that in the range πθ 20 ≤≤  the 
absolute value of ε does not exceed the unity and for θ  close to the value π/4 tends 
to 0 that according to the condition (20) we may take A = - B with a = - b =1. On 
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the other hand in a range shorter than the interval oo 3030 ≤≤− f we may take 

2412',''
8
1,' θχχ +==≈ KmUKK . By taking into account both conditions we 

observe that these assumptions correspond to the northern part of  
the Romanian Plain close to the town of Bucharest. We resort to the following ranges 
for the numerical values of parameters: ,"1"5.0,8.02.0 −≈≤≤ Tm  

sec,/1sec/1.0,3.0015.0 0 kmkmkmdkm ≤β≤≤≤  ,300 o≤≤ f  " 0.0003 .u km≈  
The enounced ranges correspond to very soft soils (m), a reported oscillation period (T) 
during the major seismic events, the thickness of superficial soft soils in the Bucharest 
region (d), the velocity of transversal waves in superficial very soft layers ( 0β ), the 
direction of front waves in the mentioned region (f) and the maximal reported 
amplitude cm30'' ≈u . Accordingly we have kmLkm 01.00 ≤≤ , 150 ≤∆≤ . More 
general results may also be obtained for larger ranges as the quoted ones.   

The obtained formula emphasizes following qualitative features of 
amplification effects: 

1. K increases proportionally to the ratio m of the second and first shear 
moduli, fact which expresses the importance of the nonlinear behavior of soft soils 
in seismic risk evaluation. 

2. K increases proportionally to the amplitudes of ascendent seismic waves 
fact which emphasizes that seismic risk is enhanced by the nonlinear behavior of 
soft soils especially for strong earthquakes. 

3. K is influenced by the parameter ∆ which depends upon the ratio of 
thickness of the layer d to characteristic length L. This fact involves a variation of 
the amplification consisting of its vanishing in so-called shadowed regions 
concentrically located with respect to the epicenter. 

4.  K decreases with the epicentral distance (determined by the increase of the 
orientation angle f) of front waves according to a nonlinear law, fact which 
emphasizes the importance of evaluating the seismic risk in soft soils with 
nonlinear behavior belonging to the epicentral regions. 

5. K increases for lower periods of seismic waves and propagation velocities 
of transversal waves also according to a nonlinear law (in which occurs the 
characteristic length which depends upon the mentioned parameters). 

6. K increases with the thickness of superficial layers due to the softness effects 
produced on larger trajectory of waves in the soil, again according to the nonlinear 
law. 

In view of effective numerical calculus were plotted in diagrams the curves 
yielding, respectively, the parameter χ  for the values of the ratio 
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8.02.0 ÷=m and 04.001.0" ÷=U  (Fig. 1) and the amplification coefficient K for 
values of parameters 002.00 ÷=χ  and oo 350 ÷=θ  (Fig. 2).   

Fig. 1 – Variation diagram ,m−χ for 04.0''01.0,8.00 ≤≤≤≤ Um . 

5. CONCLUSIONS 

The maximal additional amplification coefficients due to nonlinear effects 
(referred to the basic ascendent amplitudes) may reach values corresponding to 
very soft soils and superficial layers up to 0.28, values appropriate to the 
amplification due to the linear behavior of layered soil of reported major 
earthquakes (Cornea et al., 1980; Cornea, Mişicu, 1981), but which were 
determined without considering the nonlinear branch of stress-strain constitutive 
curves or the very soft local and very local response of soil. In such cases the entire 
resulting amplification coefficient may reach a greater value emphasizing a 
catastrophic exceptional situation. Of course, the above data furnish generally more 
ponderate indications fit for the mentioned region but do not exclude extremal 
possibilities since on a large area especially with very altered grounds dues to the 
human activities such occurrences must not be skipped out. 

On the basis of these results and using previous developed isoseistic 
description of seismic effects extended over the Romanian territory, a new set of 

 

0.0 0.2 0.4 0.6 0.8 

0.0000 

0.0005 

0.0010 

0.0015 

0.0020 

m 

χ 

0.02 

0.04 

0.015 

U''=0.01 



30 M. Mişicu et al. 10 

 

maps may be elaborated which furnish the additional amplification effects starting 
from the older ones obtained by means of linear analysis. This task will be 
performed in a subsequent work. 

Fig. 2 – Variation diagram for amplification coefficients K for .0.000125 0.02, 0 35≤ χ ≤ ≤ θ ≤o o  
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