Sa	n Francisco	Loma Prieta Earthquake 10/17/89 M6.9
	On the Magnetic	Precursor-of-the
ммі	1989 Loma Pr	ieta Earthquake
Х+		lose
IX	Jeremy	s - uerney J. Love ,
VIII		
VII	¹ Genaeuzeus in Pro	mant ATSGS Denver, CO
VI	² Dept. of Earth and Space Scien	nces, U. of Washington, Seattle, WA
V	³ Earthquake Hazards Pro	gram: USGS Mento Parts CA
IV		Sdhites
	Acknowledgements: A.C. Fraser-St	nith, 6. Klemperer (D. Culp
_	Support: USGS Mendenhall Postel	etoral Fellowship Program
0	50 km	
23°	-122°	-121

The 1989 Loma Prieta Earthquake

- Occurred at 00:04 UT Oct. 18, 1989
- Epicenter 37.04° N, 121.88°
 W in Santa Cruz Mtns.
- M_s7.1
- Depth of 18 km
- Widespread damage in San Francisco Bay Area

ap version 3 Processed Fri Oct 13, 2006 10:12:35 AM PD1, NOT REVIEWED BY HOMAI	lap	Version 3	Processed F	ri Oct 13, 2	2006 10):12:35 AN	PDT, -	- NOT	REVIEWED B	Y HUMAN
--	-----	-----------	-------------	--------------	---------	------------	--------	-------	------------	---------

PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
PEAK VEL.(cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116
INSTRUMENTAL INTENSITY	I	11-111	IV	V	VI	VII	VIII	IX	X+

E-W Magnetic Field Data

Corralitos, CA (ULF, 0.01 - 10 Hz)

- 42.70 N (mag); 7 km from epicenter
- 30-minute spectral-power averages determined in 9 frequency bands using data from E-W magnetic-induction coil sensor.
- Increased noise in MA3 index reported as a precursor by Fraser-Smith et al., GRL, 1990.

Longer term data, log books plus other overlapping data now available at FRN and Kakioka (KAK), Japan

-Kakioka, Japan (KAK) 1Hz data

- 28.90 N (mag); 8,284 km from epicenter
- 30-min average power in same frequency bands as Corralitos

-USGS Fresno, CA (FRN) 1-minute data

- 43.20 N (mag); 201 km from epicenter
- 30-min average power in band-pass just below the frequencies of the first Corralitos index but the same bandwidth

Correlation and Significance

Search for gain and timing correction at COR using correlation analysis

- Suggests gain reduction 12.05 for COR-KAK and 13.45 for COR-FRN (Oct 5-17). Therefore, use average gain factor of 12.75
- Suggests time correction of 3.00 min. COR-KAK and 3.55 for COR-FRN (Oct 5-17). Therefore, use average time-correction of 3.30 min

Other odd behavior observed – (1) Apparent frequency shifting 12 Sep. – 5 Oct. 1989

Apparent frequency shifting 12 Sep. – 5 Oct 1989

Other odd behavior observed (2) Corralitos data from Oct 5-17 is missing diurnal variation

- Peaks at 1-cycle and 2cycles per day until October 4
- Holes at 1-cycle and 2cycles per day from October 6-17.
- It appears that these data might have been inadvertently filtered since no known physical mechanism could cause this behavior.

Our Findings 1

- Several distinctly nongeophysical behaviors are observed in the E-W magnetic field data from Corralitos.
- Most disturbing are noise-level baseline shifts that occurred before and long after the earthquake and at other times.
- The 6 October to July, 1990 baseline shifts with peaks in Oct/Nov and June, 1990 continued until an amplifier was finally replaced on 10 July 1990.
- None of these noise-level shifts were accompanied by significant changes in the calibration (CAL) index.

Our Findings 2

- COR, KAK, and FRN correlated well up to Oct 6, 1990 and again began to correlate well after 10 July 1990 amplifier replacement.
- Likely amplifier malfunction during this period is indicated by 1) correlation analysis and 2) response differences between CORR and KAK or FRN to geomagnetic disturbances.

Conclusions

- A faulty amplifier appears to be the most likely reason for the noise power level fluctuations observed to start one week preceding the M7 Loma Prieta earthquake and to continue long after the event. This would explain apparent gain increases in the Corralitos data after Oct. 5, 1989 to July, 199, indicated by 1) variation in cross correlation of CORR with KAK and FRN and 2) comparison of relative amplitudes of electromagnetic disturbances.
- Other non-geophysical behaviors are also evident in this single data set and are unexplained at this point.
- Key aspects of the anomalous magnetic variations observed at Corralitos and claimed as a precursor appear therefore not to be related to the Loma Prieta earthquake but are artifacts of a sensor-system malfunction.
- Moral Measurements with multiple instrument in arrays are clearly necessary for determining the reality, or lack thereof, of geophysical signals, and for isolating problems of instrumental origin.