

New Methods for Tracking Regional and Global Crustal Changes Using the Geochemical Record of Magmatic Rocks and Their Derivative Sediments

Final Report 2022

UEFISCDI PCCF 2016_14

Mihai Ducea, Ioan Seghedi, Peter Luffi, Adriana Stoica, Constantin Balica, Relu Roban, Mihai Vlasceanu, Lucian Petrescu, et al.

Products

Over 60 high profile publications in Q1 journals	Over 85 peer reviewed publications total	Student, postdoc first authors and authors
New user friendly code for applications (GAME)	Public databases of magmatic rocks for the Andes and Carpathians	Progress in regional geology of the following areas: Apuseni, Calimani- Gurghiu-Harghita
Dissemination of geology to highschools and non scientific venues	New analytical techniques developed for project and beyond	New laboratory facility at U Bucharest

International Collaboration

- Collaborated with 17 groups over the course of the project
- Participated at 22 international conferences
- Articles co authored with 424 individual foreign authors and 45 non project members from Romania
- Articles co authored with researchers from 27 countries
- 15 foreign presentations at high profile institutions and conferences as guest/invited lecturers

US fiscoli

Field work

- Field mapping and expeditions carried out in the following parts of the Carpathians: Persani-Mountains, Calimani-Gurghiu Harghita region, Retezat Mountains, Fagaras Mountains, Apuseni Mts.
- Field mapping carried out in Mongolia (Gobi Tianshan) Western US (Arizona, Nevada, Utah), the central Andes (Argentina and Chile)

Dissemination

- Promoted geology at High-schools in Bucuresti, Craiova, Sibiu, Abrud, Brad
- Toured with several K-12 children groups the Romanian national Geologic Museum
- Promoted the project in interviews for Stiinta si Tehnica, Edupedu.ro, Radio Romania Cultural
- Promoted project results and the UEFISCDI at major geological international conferences such as Goldschmidt, Geological Society of America, American Geophysical Union, European Geoscience Union, CBGA Association, IAVCEI Association.

Dissemination efforts: touring with children at the Romanian National Geologic Museum; Conferences during the week of Geology, october 2022.

Doctoral and MS students, Teaching

5 PhD students trained in this project

2 postdocs directly collaborated and worked on the project

New MS course "Regional Tectonics" and new course "Tectonic Petrology" taught at University of Bucharest since 2020

Over 10 undergraduate students engaged in field work in the Carpathinas during the course of this project

Work-packages

- 1. Calibrations
- 2. Whole rock applications in subduction
- 3. Applications to collision
- 4. Extending to zircon
- 5. Beyond zircon: titanite

Pathway for project execution

- A first order understanding why geochemistry of arc rocks follows crustal thickness and elevation
- Real world correlations in modern day arcs help us reconstruct thickness of crust and paleoelevations in the continental crust
- We can do that within-orogens or globally with detrital data
- Examples that test our models
- Examples from the geologic past
- Easing data manipulation with an app GAME

Our earlier efforts just prior to proposal submission

Profeta et al., 2015; Chapman et al., 2015

New Applications - Mohometry on Tibet

Sundell et al., 2021

Mohometry in Iran-

Chaharlang, Ducea et al., 2021

Mohometry of the Sierra Nevada

Luffi and Ducea, 2022

And many other examples published by us

... onto mineral mohometry next

Zircon Proxies

15

Balica et al., 2020

Global crustal thickness over time (Balica et al,., 2020)

17

Tang et al., 2021

New Petrochronology tools: Titanite comes in focus

²³⁸Pb/²⁰⁶Pb

18

Barla et al., 2022

New Mohometers and Paleoaltimeters

Data filtering techniques

60

05 depth (km)

Moho

20

1(

A new technique for fractionation dependent mohometers (Luffi and Ducea, 2022)

GAME- a MATLAB code for project results

GAME model	- 🗆 🗙		
Geochemical Arc Moho Estimator			
Set Up & Run Model About			
Import raw data file			
File *.xls	Build stats file		
Select stats file			
File stats_Old-PCB 80-108 central_ARX.mat	ad data Relax all filters		
Path E:\Geology\Arcs\Georoc arcs version 2019-01-14\Unknowns\Peru C	cretaceous TAKE TWO\Oxide Total n		
Filter sensors by quality of their Reference Elevation Model Exclude sensors manually			
Reject individual estimates with REM residuals greater than 0.50 km	Included Excluded		
Reject sensors with RMSE of REM residuals greater than 0.50 km	A Ba A/CaO Th/Y Ba/Sc Th/Yb		
Select/Reject MgO bins	Ba/V U		
1 2 3 4 5 6 7 8 9	Ce/Y Ce/Yb		
Filter sensors by data availability in evaluated data set			
Reject sensors containing less than 5 🔺 data / MgO bin	Cr Cr/Sc		
Reject sensors present in less than 4 MgO bins	Cr/V Dy/Yb		
Filter sensors by their STDEV, MAD on estimated Moho (km)	Ga		
Start 1 - End 10 - Focus 5 -	Gd/Yb		
Plot results Plot stacked results			
Median Mean Both Add last results to plot Rescale Y axis to last results	RUN MODEL		

Results- Example, Vanuatu Arc, New Hebrides

Figure 24. Chemical mohometry of the New Hebrides–Vanuatu arc. Left panel: $H_{\chi} \pm MAD_{\chi}$ estimates of individual mohometers. Estimates shown as filled symbols were obtained using $e_{max} = 0.75$ km, $rmse_{max} = 0.5$ km, and $mad_{max} = 3.5$ km; $H_M \pm MAD_M$ are shown as continuous and dashed horizontal lines, respectively. Empty symbols indicate additional estimates that are obtained by relaxing e_{max} , $rmse_{max}$, and mad_{max} to 1.5, 1, and 10 km, respectively. Right panel: probability density distribution of individual estimates obtained in the two cases (thicker curve corresponds to the restricted setup); dotted line marks the peak of the curves. Inset in left panel shows the effect of mad_{max} on $H_M \pm MAD_M$ (continuous line and shaded band), and peak of probability density distribution (dotted line) at $e_{max} = 0.75$ km and $rmse_{max} = 0.5$ km. Selected mad_{max} (in italics) and resulting $H_M \pm MAD_M$ values are shown for reference. For example, setting mad_{max} to 1.5 km retains 14 mohometers, which yield $H_M \pm MAD_M = 27.1 \pm 3.1$ km. Further details and discussion in text.

Example - Andes Mts.

Applications to paleo-elevation, Baja

What causes mohometers to work?

Role of various elements in the mantle and crust

Figure 29. Total variability intervals of mohometers, ΔX , sorted by their midpoint value (marked on each bar). The resulting order mirrors the variable effect of crustal differentiation on the behavior of mohometers as shown. Inset diagrams schematically illustrate the different MgO–X trends of compatible, incompatible, and neutral mohometers.

29

Luffi and Ducea, 2022

Economic deposits are not random, they depend on crustal architecture

Thicker crust is correlated with most copper deposits

• Our future efforts (beyond this project) are to be applied to understanding ore deposit distribution in space and time

Conclusions

- Chemical mohometry is now a mature tool in petrotectonics
- Over 40 geochemical mohometrs are available and can be combined into providing a robust set of estimations for paleo crustal thickness
- Since continental crust is usually in isostatic equilibrium, crustal thickness is proportional with elevation; estimates of paleo-elevations are of great interest in the community
- The Matlab app GAME is an aid for ingesting data and generating paleo moho and paleo elevation calculations
- We have a good overall understanding what processes generate (either in the crust or mantle) the correlations we see in natural samples.