Short Communications

Oxidization of the mantle caused by sediment recycling may contribute to the formation of iron-rich mantle melts

Detao He a, Yongsheng Liu a,*, Chunfei Chen a, Stephen F. Foley b, Mihai N. Ducea c, d

a State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
b ARC Centre of Excellence for Core to Crust Fluid Systems, Department of Earth and Planetary Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
c Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA
d Faculty of Geology and Geophysics, University of Bucharest, Bucharest 010041, Romania

© 2020 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

Mantle-derived primary magmas generally have FeOtot contents of about 11 wt%. However, some primary melts show extremely high FeOtot (>13 wt%) with high MgO (>12 wt%) (ferropicrite) [1]. Considering the influence of chemical and mineral compositions of the mantle source on melt compositions, it has been argued that ferropicrites may be near-primary partial melts of pyroxenite formed in the convecting mantle [2–4], whereas others favor an origin by partial melting of an iron-rich peridotite mantle source [5,6]. Melting experiments have shown that melting conditions such as pressure and temperature can strongly influence the melt compositions, such that ferropicrites may be generated by partial melting of an olivine-dominated mantle source at ~5 GPa [3]. Some ferropicrites seem to be more oxidized than other magmas, as suggested from the Panzhihua intrusions in the Emeishan large igneous province [7], which may imply melting of a more oxidized mantle source. Furthermore, Johnston and Stout [8] showed that oxygen fugacity exerts great control on the compositions and stabilities of Cr-Fe-rich minerals, and may therefore significantly affect mantle-derived melt compositions. Local oxygen fugacity (fO2) and solidus temperature of the mantle can be dramatically affected by recycled sedimentary carbonates. This raises the question as to whether sedimentary carbonate recycling could have indirectly contributed to the formation of iron-rich melts in the mantle.

Here, we report magnesioperidotite-bearing peridotite xenoliths from the Dalihu Neogene basalt and demonstrate that the recycling of sedimentary carbonate into the mantle can induce a high-fO2 environment, and that partial melting of peridotite or pyroxenite in high-fO2 conditions may produce iron-rich melts.

The Dalihu Neogene basalt is located in the Inner Mongolia–Daxinganling Orogenic Belt (IMDOB) (Fig. S1 online), which is the eastern extension of the Central Asian Orogenic Belt (see Appendix for detailed geological setting). Volcanic activity at Dalihu began approximately 15 Myr ago and continued to as recently as 0.16–0.19 Ma. In addition to the peridotite xenoliths investigated here (Fig. 1), the Dalihu basalts also contain abundant carbonatic xenoliths that record recycling of sedimentary carbonate rocks to deep mantle [9]. Seven hberzolite xenoliths are studied here: they are mainly composed of olivine (Ol) (~50%), orthopyroxene (~Opx) (30%), clinopyroxene (Cpx) (15%) and spinel (Sp) (5%). Two types of olivine were identified in these peridotites, one has normal Mg# (100 Mg/(Mg + Fe) (30%), clinopyroxene (Cpx) (15%) and spinel (Sp) (5%). Two types of olivine that bear exsolution lamellae correlates positively with the abundance of exsolution (Fig. 1c, d). The high Mg# of olivines that bear exsolution lamellae correlates positively with the abundance of exsolution (Fig. 1c, d). Magnesioperidotite-rich spinels and hematite with extremely high Fe3+ /ΣFe ratio (>0.95) were identified, and generally coexist with the high Mg# olivine (Fig. 1b, c). The magnesioperidotitic spinels occur as co-existing Mg-rich and Fe-rich end members [(Mg0.58Fe0.42)2+Mn0.05Ni0.02Al0.13]3+Al0.03Cr0.01]3+O4 and [(N0.54Mg0.46)2+Fe1.93]3+Al0.13Cr0.01]3+O4]. Hematite has ~3 wt % Al2O3 with minor Cr and Mg (Table S1 online). Clinopyroxenes fall into two groups with differing Sr isotopic character: those with high Sr content show homogeneous and low 87Sr/86Sr ratio, whereas clinopyroxenes with low Sr content show variation in 87Sr/86Sr ratio from core to rim (Fig. S3, Table S2 online, see Appendix for Methods).

(1) Mantle oxidation induced by sedimentary carbonate recycling. The extremely Mg-rich olivine may result from the exsolution of iron in a high fO2 environment [8,10], Fe-Mg exchange between olivine and other phase [11], or it may be inherited from

https://doi.org/10.1016/j.scib.2020.01.003
2095-9273/ © 2020 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

Please cite this article as: D. He, Y. Liu, C. Chen et al., Oxidization of the mantle caused by sediment recycling may contribute to the formation of iron-rich mantle melts, Science Bulletin, https://doi.org/10.1016/j.scib.2020.01.003
high-Mg# materials such as metamorphosed serpentine [12]. Olivines in the Dalihu peridotites generally have Mg# of 90.5–91.0, and no serpentine (or other high Mg# mineral) occurs, indicating that the Mg-rich olivine most probably resulted from a local high-fO2 mantle environment rather than from the transformation of high-Mg# minerals. Furthermore, magnesioferrite (MgFe2O4) is a rare mineral of the spinel group, and generally exists under oxidized conditions. The coexistence of Mg-rich olivine and high-Fe3+/ΣFe phases in the Dalihu peridotite, and the intergrowth of magnesioferrite and hematite [13] thus records a strongly oxidized environment. Subsolidus oxidation of olivine converts Fe2+ into Fe3+, which cannot fit in the octahedral site of olivine, resulting in the exsolution of magnesioferrite and hematite and an increase in the Mg# of the remaining olivine. This has been demonstrated experimentally to occur through reaction with infiltrating carbonate melts [14].

The carbonatic xenoliths carried by the Dalihu basalt retain the trace element patterns and δ18OSMOW values of argillaceous limestone, suggesting an origin by subduction of carbonate-rich sediments from the surface into the mantle [9]. Since carbonate-rich sediments generally have much higher 87Sr/86Sr ratios than mantle peridotites, the clinopyroxenes formed by the reaction between carbonate melts and peridotites should track this recycling because clinopyroxenes sequester most of the Sr in peridotites.

Although most clinopyroxene grains preserve the homogeneous and low 87Sr/86Sr of the original mantle rock, some grains show increasing 87Sr/86Sr ratios from core to rim caused by reaction with infiltrating recycled sedimentary carbonate melts (Fig. S3 online). Subducted carbonate-rich sediments can potentially increase the fO2 of surrounding mantle during reduction of carbonate to graphite, or by the addition of CO2 fluid that results from decarbonation. It is thus reasonable to speculate that the extremely oxidized environment recorded by the peridotite could have been caused by the subduction of sedimentary carbonate.

(2) Origin of iron-rich mantle melts in high fO2 conditions. To simulate the chemical compositions of mantle-derived melts formed in oxidized conditions, partial melting of peridotite and pyroxenite under various high fO2 conditions (from QFM + 0 to QFM + 3) (Fig. 2) were modelled using pMELTS [15]. Since ferropicrite is associated with continental flood basalt provinces [2], which are resulting from the plume-type active upwelling, isentropic decompression melting model was used. Primitive mantle, depleted mantle, the Dalihu peridotites and the Hannuoba pyroxenites were used as source materials; detailed modeling information is described in the Appendix. Our modeling results show that melt compositions are strongly affected by fO2, and show high

![Fig. 1. Micrographs of the Dalihu peridotite. (a) Thin section of peridotite xenolith showing red, oxidized rims to olivines. (b, c) SEM pictures showing the occurrence of high Mg# olivine and high-Fe3+ phases – bright lines and spots are magnesioferrite-rich spinel and hematite. Yellow circles are analysis spots with analysis spot numbers: see Table S1 (online) for corresponding analytical results. (d) Correlation between olivine Mg# and abundance of exsolutions of high-Fe3+ phases. Stippled line is trend line. Mfr: magnesioferrite; Hem: hematite; Ol: olivine; Sp: spinel; Opx: orthopyroxene; Cpx: clinopyroxene; Mfr-Hem: Intergrowth of magnesioferrite and hematite.](image)

![Fig. 2. Results of pMELTS calculations when pressure is 2.0 GPa. Variations of FeOtot (a), MgO (b) content in partial melts of peridotite and pyroxenite as function of fO2. (c) Variations of modal olivine percentage in residue phase and FeOtot content in olivine from primitive mantle as function of fO2. The FeOtot content of primary melt of Paraná-Etendeka ferropicrite (solid line) and picrite (dashed line) are also shown for comparison [5]. See Appendix for data sources and detailed explanation.](image)
FeOtot and MgO at high fO\textsubscript{2}. Generally, the FeOtot and MgO contents of melts increase with increasing fO\textsubscript{2} (Fig. 2a, b). Peridotite-derived melts have FeOtot of 12.6 wt%–13.6 wt% at QFM + 1, which increase sharply to about 16 wt% at QFM + 2.75 (Fig. 2a); Pyroxenite-derived melt has FeOtot about 15 wt% at QFM + 1: this also increases sharply to 16 wt% at QFM + 2.75. Both modal olivine percentage in residue phases and the iron content in olivine decrease sharply with increasing oxygen fugacity (Fig. 2c), these may be the reason why FeOtot in melt increases with increasing fO\textsubscript{2}.

The high FeOtot and MgO of primitive melts produced at high fO\textsubscript{2} agrees well with the compositions of ferropicrites (FeOtot > 13 wt%, MgO ~ 19 wt%) [5]. Although the oxygen fugacity of primary ferropicrite is rarely constrained, the high fO\textsubscript{2} indicated by high-Ti basalts from the Emeishan large igneous province [7] implies that the mantle source of some ferropicrite may be oxidized as well. This implies that ferropicrite could be produced by the partial melting of oxidized mantle peridotite, and that a Fe-enriched mantle source [1] is not necessary. Some pyroxenite-derived melts formed at normal mantle fO\textsubscript{2} may have higher FeOtot than melts of peridotite, and have been advocated to explain ferropicrite petrogenesis [4]. However, the Al\textsubscript{2}O\textsubscript{3} contents (about 14 wt%) (Tables S3 and S4 online) of these melts are much higher than in ferropicrites (<10 wt%) [5]. Nevertheless, melting of pyroxenite under high fO\textsubscript{2} may overcome this inconsistency and produce melts with high FeOtot, MgO and low Al\textsubscript{2}O\textsubscript{3} contents that agree well with natural ferropicrites (Fig. 2). Overall, our pMELTS modeling shows that melting of mantle composed of a mixture of peridotite and pyroxenite under oxidized conditions may explain the formation of iron-rich mantle melts, particularly ferropicrites. The origin of the oxidized conditions may be related to the subduction of carbonates, as suggested by our natural peridotite xenoliths.

Declaration of Competing Interest

The authors declare that they have no conflict of interest.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (41530211 and 41703015), the State Administration of Foreign Expert Affairs of China (BPO179022), MOST Special Funds of the State Key Laboratory of Geological Processes and Mineral Resources (MSFGPMR01) and the Fundamental Research Funds for the Central Universities (CUGL170801). Mihai N. Ducea acknowledges support from US National Science Foundation (EAR 1725002) and the Romanian Executive Agency for Higher Education, Research, Development and Innovation Funding Project (PN-III-P4-ID-PCCF-2016-0014). We thank anonymous reviewers and Prof. Jussi S. Heinonen for constructive reviews. We thank Drs. Junpeng Wang and Wenbin Ning for the Electron Probe Micro Analysis.

Author contributions

Yongsheng Liu designed the project. Detao He, Yongsheng Liu, Stephen Foley and Mihai N. Ducea wrote the paper. Measurements were done by Detao He. All authors contributed to discussions and interpretations.

Appendix A. Supplementary materials

Supplementary materials to this article can be found online at https://doi.org/10.1016/j.scib.2020.01.003.

References