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Mantle-derived primary magmas generally have FeOtot contents
of about 11 wt%. However, some primary melts show extremely
high FeOtot (>13 wt%) with high MgO (>12 wt%) (ferropicrite) [1].
Considering the influence of chemical and mineral compositions
of the mantle source on melt compositions, it has been argued that
ferropicrites may be near-primary partial melts of pyroxenite
formed in the convecting mantle [2–4], whereas others favor an
origin by partial melting of an iron-rich peridotitic mantle source
[5,6]. Melting experiments have shown that melting conditions
such as pressure and temperature can strongly influence the melt
compositions, such that ferropicrites may be generated by partial
melting of an olivine-dominated mantle source at ~5 GPa [5]. Some
ferropicrites seem to be more oxidized than other magmas, as sug-
gested from the Panzhihua intrusions in the Emeishan large
igneous province [7], which may imply melting of a more oxidized
mantle source. Furthermore, Johnston and Stout [8] showed that
oxygen fugacity exerts great control on the compositions and sta-
bilities of Cr-Fe-rich minerals, and may therefore significantly
affect mantle-derived melt compositions. Local oxygen fugacity
(fO2) and solidus temperature of the mantle can be dramatically
affected by recycled sedimentary carbonates. This raises the ques-
tion as to whether sedimentary carbonate recycling could have
indirectly contributed to the formation of iron-rich melts in the
mantle.

Here, we report magnesioferrite-bearing peridotite xenoliths
from the Dalihu Neogene basalt and demonstrate that the recycling
of sedimentary carbonate into the mantle can induce a high-fO2

environment, and that partial melting of peridotite or pyroxenite
in high-fO2 conditions may produce iron-rich melts.
The Dalihu Neogene basalt is located in the Inner Mongolia–
Daxinganling Orogenic Belt (IMDOB) (Fig. S1 online), which is the
eastern extension of the Central Asian Orogenic Belt (see Appendix
for detailed geological setting). Volcanic activity at Dalihu began
approximately 15 Myr ago and continued to as recently as 0.16–
0.19 Ma. In addition to the peridotite xenoliths investigated here
(Fig. 1), the Dalihu basalts also contain abundant carbonatitic xeno-
liths that record recycling of sedimentary carbonate rocks to deep
mantle [9]. Seven lherzolite xenoliths are studied here: they are
mainly composed of olivine (Ol) (~50%), orthopyroxene (~Opx)
(30%), clinopyroxene (Cpx) (15%) and spinel (Sp) (5%). Two types of
olivine were identified in these peridotites, one has normal Mg#
(100 Mg/(Mg + Fe) for mantle olivine (90.5–91.0) and contains no
exsolution (Fig. S2 online), while the other contains abundant exso-
lution lamellae of Fe-Mg-Ni oxides (Fig. 1b, c) and has appreciably
higher Mg# (95.2–98.1) (Table S1 online). The high Mg# of olivines
that bear exsolution lamellae correlates positively with the abun-
dance of exsolutions (Fig. 1c, d). Magnesioferrite-rich spinels and
hematitewith extremelyhigh Fe3+/RFe ratio (>0.95)were identified,
andgenerally coexistwith thehighMg#olivine (Fig. 1b, c). Themag-
nesioferritic spinels occur as co-existing Mg-rich and Fe-rich end

members [ðMg0:88Fe
2þ
0:10Mn0:01Ni0:01Þ2þ1:00ðFe3þ1:85Al0:13Cr0:01Þ

3þ
1:99O4 and

ðNi0:54Mg0:40Fe
2þ
0:06Þ

2þ
1:00ðFe3þ1:88Al0:10Cr0:01Þ

3þ
1:99O4]. Hematite has ~3% wt

% Al2O3 withminor Cr andMg (Table S1 online). Clinopyroxenes fall
into two groupswith differing Sr isotopic character: thosewith high
Sr content show homogeneous and low 87Sr/86Sr ratio, whereas
clinopyroxenes with low Sr content show variation in 87Sr/86Sr ratio
fromcore to rim (Fig. S3, Table S2 online, see Appendix forMethods).

(1) Mantle oxidization induced by sedimentary carbonate recy-
cling. The extremely Mg-rich olivine may result from the exsolu-
tion of iron in a high fO2 environment [8,10], Fe-Mg exchange
between olivine and other phase [11], or it may be inherited from
on-rich
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Fig. 2. Results of pMELTS calculations when pressure is 2.0 GPa. Variations of FeOtot

(a), MgO (b) content in partial melts of peridotite and pyroxenite as function of fO2.
(c) Variations of modal olivine percentage in residue phase and FeOtot content in
olivine from primitive mantle as function of fO2. The FeOtot content of primary melt
of Parana-Etendeka ferropicrite (solid line) and picrite (dashed line) are also shown
for comparison [5]. See Appendix for data sources and detailed explanation.

Fig. 1. Micrographs of the Dalihu peridotite. (a) Thin section of peridotite xenolith showing red, oxidized rims to olivines. (b, c) SEM pictures showing the occurrence of high
Mg# olivine and high-Fe3+ phases – bright lines and spots are magnesioferrite-rich spinel and hematite. Yellow circles are analysis spots with analysis spot numbers: see
Table S1 (online) for corresponding analytical results. (d) Correlation between olivine Mg# and abundance of exsolutions of high-Fe3+ phases. Stippled line is trend line. Mfr:
magnesioferrite; Hem: hematite; Ol: olivine; Sp: spinel; Opx: orthopyroxene; Cpx: clinopyroxene; Mfr-Hem: Intergrowth of magnesioferrite and hematite.
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high-Mg# materials such as metamorphosed serpentine [12].
Olivines in the Dalihu peridotites generally have Mg# of 90.5–
91.0, and no serpentine (or other high Mg# mineral) occurs, indi-
cating that the Mg-rich olivine most probably resulted from a local
high-fO2 mantle environment rather than from the transformation
of high-Mg# minerals. Furthermore, magnesioferrite (MgFe2O4) is
a rare mineral of the spinel group, and generally exists under oxi-
dized conditions. The coexistence of Mg-rich olivine and high-Fe3+/
RFe phases in the Dalihu peridotite, and the intergrowth of magne-
sioferrite and hematite [13] thus records a strongly oxidized envi-
ronment. Subsolidus oxidation of olivine converts Fe2+ into Fe3+,
which cannot fit in the octahedral site of olivine, resulting in the
exsolution of magnesioferrite and hematite and an increase in
the Mg# of the remaining olivine. This has been demonstrated
experimentally to occur through reaction with infiltrating carbon-
ate melts [14].

The carbonatitic xenoliths carried by the Dalihu basalt retain
the trace element patterns and d18OSMOW values of argillaceous
limestone, suggesting an origin by subduction of carbonate-rich
sediments from the surface into the mantle [9]. Since carbonate-
rich sediments generally have much higher 87Sr/86Sr ratios than
mantle peridotites, the clinopyroxenes formed by the reaction
between carbonate melts and peridotites should track this recy-
cling because clinopyroxenes sequester most of the Sr in
peridotites.

Although most clinopyroxene grains preserve the homogeneous
and low 87Sr/86Sr of the original mantle rock, some grains show
increasing 87Sr/86Sr ratios from core to rim caused by reaction with
infiltrating recycled sedimentary carbonate melts (Fig. S3 online).
Subducted carbonate-rich sediments can potentially increase the
fO2 of surrounding mantle during reduction of carbonate to gra-
phite, or by the addition of CO2 fluid that results from decarbona-
tion. It is thus reasonable to speculate that the extremely oxidized
environment recorded by the peridotite could have been caused by
the subduction of sedimentary carbonate.

(2) Origin of iron-rich mantle melts in high fO2 conditions. To
simulate the chemical compositions of mantle-derived melts
formed in oxidized conditions, partial melting of peridotite and
pyroxenite under various high fO2 conditions (from QFM + 0 to
QFM + 3) (Fig. 2) were modelled using pMELTS [15]. Since ferropi-
crite is associated with continental flood basalt provinces [2],
which are resulted from the plume-type active upwelling, isen-
tropic decompression melting model was used. Primitive mantle,
depleted mantle, the Dalihu peridotites and the Hannuoba pyrox-
enites were used as source materials; detailed modeling informa-
tion is described in the Appendix. Our modeling results show
that melt compositions are strongly affected by fO2, and show high
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FeOtot and MgO at high fO2. Generally, the FeOtot and MgO contents
of melts increase with increasing fO2 (Fig. 2a, b). Peridotite-derived
melts have FeOtot of 12.6 wt%–13.6 wt% at QFM + 1, which increase
sharply to about 16 wt% at QFM + 2.75 (Fig. 2a); Pyroxenite-
derived melt has FeOtot about 15 wt% at QFM + 1: this also
increases sharply to 16 wt% at QFM + 2.75. Both modal olivine per-
centage in residue phases and the iron content in olivine decrease
sharply with increasing oxygen fugacity (Fig. 2c), these may be the
reason why FeOtot in melt increases with increasing fO2.

The high FeOtot and MgO of primitive melts produced at high
fO2 agrees well with the compositions of ferropicrites (FeOtot > 13-
wt%, MgO ~ 19 wt%) [5]. Although the oxygen fugacity of primary
ferropicrite is rarely constrained, the high fO2 indicated by high-
Ti basalts from the Emeishan large igneous province [7] implies
that the mantle source of some ferropicrite may be oxidized as
well. This implies that ferropicrite could be produced by the partial
melting of oxidized mantle peridotite, and that a Fe-enriched man-
tle source [1] is not necessary. Some pyroxenite-derived melts
formed at normal mantle fO2 may have higher FeOtot than melts
of peridotite, and have been advocated to explain ferropicrite pet-
rogenesis [4]. However, the Al2O3 contents (about 14 wt%) (Tables
S3 and S4 online) of these melts are much higher than in ferropi-
crites (<10 wt%) [5]. Nevertheless, melting of pyroxenite under
high fO2 may overcome this inconsistency and produce melts with
high FeOtot, MgO and low Al2O3 contents that agree well with nat-
ural ferropicrites (Fig. 2). Overall, our pMELTS modeling shows that
melting of mantle composed of a mixture of peridotite and pyrox-
enite under oxidized conditions may explain the formation of iron-
rich mantle melts, particularly ferropicrites. The origin of the oxi-
dized conditions may be related to the subduction of carbonates,
as suggested by our natural peridotite xenoliths.
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