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Abstract The Permian tectonic setting of the Lhasa Terrane in southern Tibet remains controversial
(i.e., continental rift vs. subduction‐collision) and is crucial to palinspastic reconstructions of the eastern
Tethys during the breakup of Gondwana. In this study, we present new geochronological, geochemical, and
mineralogical data for the Permian (~262 Ma) Yawa intrusions in the southern Lhasa Terrane. These rocks
are silica‐undersaturated and alkaline, with high TiO2 and moderate MgO, and exhibit enrichments in Th,
light rare earth elements, and Nb‐Ta, and depletions in K. These chemical compositions, combined with
uniform whole‐rock (87Sr/86Sr)i (0.7039–0.7044), εNd(t) (1.85–2.81), and εHf(t) (4.21–6.90) values, and zircon
εHf(t) (4.53–9.97) and δ18O (5.04‰–5.76‰) values, indicate the magmas were derived by partial melting of
amphibole‐rich lithospheric mantle. The magmas subsequently underwent fractionation of clinopyroxene,
amphibole, and Fe‐Ti oxides. The amphibole in the lithospheric mantle likely formed as cumulates from
low‐degree asthenospheric melts during incipient extension. Given that the amphibole‐rich metasomatic
veins have a lower melting temperature than the surrounding peridotite, they were susceptible to melting
during the early stages of thermal perturbation of the mantle. Because there is no evidence of Permian
continental subsidence in the Lhasa Terrane, we suggest the Yawa intrusions were formed at the onset of
lithospheric extension associated with initial rifting of the Lhasa Terrane from the Indian Plate during
Gondwana breakup, which was a precursor to the opening of the Neo‐Tethys Ocean.

1. Introduction

Continental rifting of Gondwana started in the early Carboniferous and peaked in the Permian, leading to
the breakup of the supercontinent and opening of several Tethyan oceanic basins. The closure of these
basins was accompanied by the northward assembly of Gondwana‐derived terranes and formation of the
Tethyan Orogenic Belt (e.g., Metcalfe, 2002, 2009, 2011, 2013). The formation of the Tibetan Plateau was a
key part of this process and is generally thought to have resulted from the amalgamation of several
Gondwana‐derived terranes (e.g., the Qiangtang and Lhasa Terranes) or continents (e.g., the Indian Plate)
with the Eurasian Plate. The successive formation and destruction of the Paleo‐, Meso‐, and Neo‐Tethys
oceanic basins in response to repeated continental rifting and collision has occurred since the Permian
(Figure 1a; Cocks & Torsvik, 2013; Metcalfe, 2002, 2009, 2011, 2013; Yin & Harrison, 2000; Zhu, Zhao,
Niu, Dilek, et al., 2011). However, the paleogeographic history of the Lhasa Terrane remains a key unknown
in late Paleozoic paleogeographic reconstructions of eastern Asia during the breakup of the Gondwana
supercontinent. Given that the Lhasa, Qiangtang, and Himalayan terranes were covered by similar
Paleozoic shelf strata containing glacial diamictites and cold‐ to cool‐water faunas, they are considered to
have been connected N‐S‐trending segments situated on the northern passive continental margin of the
Indian Plate in Gondwana, which drifted northward during the Permian‐Early Triassic as the Meso‐ and
Neo‐Tethys oceans opened (e.g., Ali et al., 2013; Chen et al., 2017; Gehrels et al., 2011; Metcalfe, 2002,
2011; Yin & Harrison, 2000). However, the geochemistry of Permian igneous rocks and the detrital zircon
provenance of late Paleozoic strata in the Lhasa Terrane are somewhat different to those in the
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Himalayan and Qiangtang terranes (arc‐type vs. rift‐type and detrital zircon age populations of ~1,170 vs.
950 Ma, respectively; e.g., Ferrari et al., 2008; Metcalfe, 2013; Stampfli & Borel, 2002; Zhang et al., 2013;
Zhu et al., 2009, 2010; Zhu, Zhao, Niu, Dilek, et al., 2011). As such, it has been suggested that the Lhasa
Terrane drifted northward from Australian parts of Gondwana and was a microcontinent within the
Paleo‐Tethys Ocean or part of a subduction‐collision orogenic system during the Permian, whereas the
Himalayan and Qiangtang terranes were the passive margin of the Indian part of Gondwana and
underwent Permian rifting. These two contrasting hypotheses have significant implications for our
understanding of the tectonic and paleogeographic evolution of the eastern Tethys during Gondwana
breakup, particularly the timing and geodynamics of the opening of the Neo‐Tethys Ocean (e.g., Metcalfe,
2011, 2013; Yin & Harrison, 2000; Zhu et al., 2013).

Paleomagnetism is a useful tool for palinspastic reconstructions. However, paleomagnetic data for Permian
rocks from the Lhasa Terrane are still sparse, and the studied rocks are mostly remagnetized (Ali et al., 2013;
Li et al., 2016; Xu et al., 2015). In addition, paleomagnetism can only constrain the paleolatitude of a kine-
matically independent plate, not its paleolongitude, and the Permian paleolatitudes of the Indian and
Australian parts of Gondwana were probably similar (Li et al., 2016). Therefore, the key to resolving this
issue is to identify the tectonic setting of the Lhasa Terrane (i.e., continental rift vs. subduction‐collision)

Figure 1. (a) Simplified tectonic map of the Tibetan Plateau, showing the localities of Permian volcanic rocks (after Yin &
Harrison, 2000; Zhu et al., 2010) and (b) geological map of the Yawa region, southern Lhasa Terrane. Abbreviations:
IYZSZ = Indus‐Yarlung Zangbo Suture Zone; BNSZ = Bangong‐Nujiang Suture Zone; JSSZ = Jinsha Suture Zone;
MBT = Main Boundary Thrust; MCT = main central thrust; STDS = Southern Tibetan Detachment System.
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in the Permian (e.g., Chen et al., 2017; Metcalfe, 2002, 2009, 2011, 2013; Yin & Harrison, 2000; Zhu et al.,
2010, 2013). Although studies favoring the first model argue that the diversity of Paleozoic strata in the
Lhasa Terrane does not represent robust evidence against off the northern Indian Plate (e.g., Chen et al.,
2017; Gehrels et al., 2011; Jin et al., 2015), the range of igneous rocks in these terranes must be explained.
However, there are few high‐precision geochronological data for Permian igneous rocks in the Lhasa
Terrane (Figure 1a). Thus, research into the distribution and tectonic setting of Permian igneous rocks in
the Lhasa Terrane is required.

Numerous studies have revealed that mantle metasomatic phases such as amphibole or phlogopite, or
veins/domains dominated by these metasomatic phases, represent an important lithology in the lithospheric
mantle (e.g., Pilet, 2015; Pilet et al., 2008; Ma et al., 2011; Mayer et al., 2013; Dai et al., 2014, 2017; Ekici et al.,
2014; Rooney et al., 2014, 2017; Tappe et al., 2016). Importantly, due to these metasomatic phases having a
lower melting temperature than surrounding peridotite, they are susceptible to melting during the early
stages of thermal perturbation of the mantle (e.g., early continental rifting). Melts generated from the
amphibole‐rich lithospheric mantle will have distinct geochemical characteristics (e.g., Pilet, 2015; Pilet
et al., 2008, 2011). In this study, we present geochronological, geochemical, and mineralogical data for the
Permian (~262 Ma) Yawa intrusions in the southern Lhasa Terrane (Figure 1b), to evaluate their mantle
source characteristics and petrogenesis. The rocks in the intrusions are kaersutite bearing and basanitic to
basaltic trachyandesitic in composition. The rocks have high TiO2 contents, Nb‐Ta enrichment, K depletion,
positive whole‐rock εNd(t) and εHf(t) values, and positive zircon εHf(t) and mantle‐like zircon δ18O values.
These chemical and isotopic features indicate derivation by the partial melting of an amphibole‐rich litho-
spheric mantle. Therefore, in combination with the regional geology, our study provides evidence for an
extensional setting for the Lhasa Terrane in the Permian, and new constraints on the timing of initial rifting
of the Lhasa Terrane from the northern margin of the Indian part of Gondwana.

2. Geological Background and Sample Petrography

The Lhasa Terrane is one of four N‐S‐trending tectonic units that form the Tibetan Plateau. It is bordered by
the Bangong‐Nujiang Suture Zone (a relic of the Meso‐Tethys Ocean) to the north and the Indus‐Yarlung‐
Tsangpo Suture Zone (a relic of the Neo‐Tethys Ocean) to the south (Figure 1a; e.g., Yin & Harrison,
2000; Metcalfe, 2013; Zhu et al., 2013). The Lhasa Terrane is considered to have rifted from the Indian or
Australian parts of Gondwana and then drifted northward before finally being amalgamated with the
Qiangtang Terrane during the Early Cretaceous (e.g., Kapp et al., 2007; Metcalfe, 2013; Yin & Harrison,
2000; Zhu et al., 2013). The crust of the Lhasa Terrane underwent pre‐Cenozoic shortening, possibly by
>40%, during this collisional event (e.g., Kapp et al., 2007). It then collided with the Indian Plate during
the Late Cretaceous‐early Tertiary, which may have caused significant crustal thickening and uplift of the
Tibetan Plateau (e.g., Chung et al., 2005; Yin & Harrison, 2000). In addition, separate crustal fragments
may have amalgamated with the Lhasa Terrane prior to its collision with the Qiangtang Terrane (Figure 1a;
e.g., Yang et al., 2009; Zhu, Zhao, Niu, Mo, et al., 2011). Significantly, the Sumdo oceanic eclogite of the cen-
tral Lhasa Terrane, which yields protolith and metamorphic ages of ~300 and ~260 Ma, respectively, prob-
ably represents a fragment of Paleo‐Tethys oceanic crust (Figure 1a; e.g., Yang et al., 2009). The Lhasa
Terrane consists mainly of Paleozoic and Mesozoic marine strata and Late Triassic‐early Tertiary
Gangdese granitoids (e.g., Ji et al., 2009; Zhu et al., 2017). Paleozoic sedimentary strata are distributed pri-
marily in the central‐northern part of the Lhasa Terrane and comprise Carboniferous sandstones, metasand-
stones, shales, and phyllites with subordinate Ordovician, Silurian, and Permian limestones and interbedded
mafic and silicic volcanic rocks (Gehrels et al., 2011; Yin & Harrison, 2000). The flora and fauna, glaciomar-
ine diamictites, and detrital zircon provenance data of these Paleozoic sedimentary strata indicate that the
Lhasa Terrane was located on the Indian‐Australian margin of Gondwana until the early Permian
(Metcalfe, 2013, and references therein). The Gangdese batholith is >3,000 km long, extending from the
Chayu‐western Yunnan (Dianxi)‐Burma batholith in the east to the Kohistan‐Ladakh batholith in the west
(e.g., Ji et al., 2009; Mo et al., 2009). Pre‐Mesozoic igneous rocks in this region have been the focus of several
studies (e.g., Ding et al., 2015; Ji et al., 2012; Zhu et al., 2009, 2010). However, among the studied Permian
igneous rocks (Figure 1a), only the Pikang granite in the central Lhasa Terrane has been dated by zircon
U‐Pb geochronology (Figure 1a; Zhu et al., 2009). The Pikang granite occurs as relicts of variable size or apo-
physes (~80 m wide) within Early Cretaceous granite that intruded Paleozoic‐Jurassic sedimentary rocks.
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These rocks show a geochemical affinity to S‐type granites, including high A/CNK (≥1.08) and normative
corundum (1.3%–2.0%) values and high (87Sr/86Sr)i (>0.708) and low εNd(t) (less than −6.0) values.
Integrating these data with those for Early‐Middle arc‐type basalts has led to the Pikang granite being
interpreted as evidence for a tectonic transition from subduction to collision in the Lhasa Terrane during
the Permian (Zhu et al., 2009, 2010).

We collected samples from three intrusions located close to the village of Yawa in the southern Lhasa
Terrane (Figure 1b). The samples are medium to coarse grained and consist mainly of amphibole and plagi-
oclase, with minor clinopyroxene, apatite, ilmenite, and zircon (Figure 2). The rocks have been altered to
varying degrees, whereby small amounts of amphibole and clinopyroxene have been epidotized and most
of the plagioclase has been sericitized and epidotized (Figures 2b and 2c). Sedimentary strata exposed in
the study area include the lower Permian Angjie, middle Permian Xiala, Upper Triassic Dibucuo, and
Eocene Linzizong formations, and the rocks sampled for this study intrude the Angjie and Xiala formations
(Figure 1b). The Angjie Formation in this region comprises bioclastic limestone, quartzose sandstone, and
siltstone and is conformably overlain by the Xiala Formation, which comprises crinoid‐bearing limestone
with interbedded sandstone, mudstone, and siliceous rocks.

3. Analytical Methods and Results

Details of analytical methods for zircon U‐Pb and Lu‐Hf isotope analysis, whole‐rock major and trace ele-
ment and Sr‐Nd isotope analysis, and in situ major and trace element analysis of amphibole can be found
in the supporting information (Li et al., 2010; Liang et al., 2018; Liu et al., 2008, 2015; Wang et al., 2017).

Figure 2. (a) Field site and (b and c) photomicrographs (cross‐polarized light) showing the mineral composition and tex-
ture of the Yawa intrusions. Abbreviations: Am = amphibole; Im = ilmenite; Pl = plagioclase; Cpx = clinopyroxene.

10.1029/2018JB016281Journal of Geophysical Research: Solid Earth

ZENG ET AL. 2567



3.1. Zircon U‐Pb Geochronological, Trace Element, and Hf‐O Isotope Data

Zircon U‐Pb, trace element, and Hf‐O isotope data are listed in Tables S1–S3. Twenty‐four U‐Pb isotopic
analyses were carried out on zircon grains from sample 14YW‐01. Twenty concordant analyses yielded
206Pb/238U ages of 258 ± 5 to 268 ± 6 Ma, with a weighted mean age of 262 ± 2 Ma (±2σ; mean standard
weighted deviation (MSWD) = 0.4; Figure 3a). Zircon Lu‐Hf isotope analyses were performed near the sites
of O isotope analyses. All these analyses yielded low 176Lu/177Hf ratios (<0.003), indicating negligible radio-
genic Hf in‐growth after zircon formation. The Yawa zircon grains exhibit uniform 176Hf/177Hf values of
0.282436–0.282600 and age‐corrected (176Hf/177Hf)i values of 0.282745–0.282898, yielding age‐corrected
εHf(t) values and Hf model ages (TDM) of 4.53–9.97 and 507–729 Ma, respectively (Table S3; Figure 4a).
Zircon O isotopic compositions are relatively homogeneous, with δ18O values of 5.04‰ to 5.76‰
(Figure 4b; Table S3) and a mean value of 5.39‰ ± 0.17‰ (±2σ; n = 15), consistent with that of igneous zir-
con grains in equilibrium with mantle‐derived magmas (5.3‰ ± 0.3‰; Valley, 2003).

The zircon grains analyzed in this study comprise whole crystals and fragments of long euhedral crystals
with lengths of 100–150 μm. All crystals are relatively homogeneous, exhibiting either weak and broad or
oscillatory zoning in cathodoluminescence images (Figure 3a), which is typical of zircon grains in igneous
rocks (Corfu et al., 2003). In addition, the zircon grains have high Th/U ratios (≥0.5) (Table S2), strongly
depleted light rare earth element (LREE) and enriched heavy rare earth element (HREE) patterns, negative
Eu and positive Ce anomalies (Figure 3b), and mantle‐like zircon Hf‐O isotopes (Figure 4b), which further
indicate a magmatic origin without recrystallization (Corfu et al., 2003; Hoskin & Black, 2000). In summary,
our new age data indicate formation of the Yawa intrusions at ~262 Ma, which is consistent with the results
of Li et al. (2012).

Figure 3. (a) Zircon U‐Pb concordia plots and representative cathodoluminescence images of zircon grains from sample
14YW‐01 and (b) chondrite‐normalized rare earth element plot of the Yawa intrusion zircon grains. Normalizing values
are from Sun and McDonough (1989).

Figure 4. (a) Plots of zircon εHf(t) versus age (Ma) and (b) zircon εHf(t) versus zircon δ18O for the Yawa intrusions. Zircon
εHf(t) values of the Pikang granite are from Zhu et al. (2009), and mantle zircon δ18O values are from Valley (2003).
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3.2. Whole‐Rock Major and Trace Element and Sr‐Nd‐Hf
Isotope Data

The whole‐rock major and trace element data are listed in Table S4. Major
elements were recalculated and presented on an anhydrous basis in all
figures. The Yawa intrusions have low SiO2 (38.45–52.86 wt.%); high
TiO2 (2.34–4.88 wt.%), Fe2O3

T (6.34–17.85 wt.%), and K2O + Na2O
(3.07–7.51 wt.%); and moderate MgO (3.33–8.21 wt.%) contents. Data for
the intrusions are plotted within the alkaline field on the total alkalis
versus silica diagram, and they are classified as sodic basanites to basaltic
trachyandesites (Figure 5). In general, the major element data of the Yawa
intrusions show linear trends on Harker diagrams (Figure 6).

Chondrite‐normalized REE and primitive‐mantle‐normalized multiele-
ment diagrams are shown in Figure 7. REE patterns are steep with varying
degrees of LREE enrichment relative to HREE, with (La/Yb)N ratios
(where N denotes chondrite normalized) of 15.15–31.12 and (Dy/Yb)N
ratios of 1.58–2.35. The primitive‐mantle‐normalized trace element pat-
terns are typically steeply sloping, with enrichment of high‐field‐strength
elements over large‐ion lithophile elements, and negative K anomalies. In
general, the Yawa intrusions share many similarities with typical ocean
island basalts (Sun & McDonough, 1989) but have higher incompatible
element concentrations.

The Yawa intrusions have a narrow range of age‐corrected initial isotopic compositions (Table S5; Figure 8).
They are characterized by (143Nd/144Nd)i values of 0.512394–0.512443 with age‐corrected εNd(t) values of
1.85–2.81, (87Sr/86Sr)i values of 0.7039–0.7044, and (176Hf/177Hf)i values of 0.282748–0.282836 with age‐
corrected εHf(t) values of 4.53–9.97, which are mostly consistent with the zircon εHf(t) values. The end‐
member values used for Hf isotope calculations are from Blichert‐Toft and Albarède (1997), Griffin et al.
(2000), and Soderlund et al. (2004).

3.3. In Situ Amphibole Geochemistry

The studied amphibole grains are high in SiO2 (38.29–41.23 wt.%), CaO (11.69–12.47 wt.%), MgO
(10.86–12.94 wt.%), TiO2 (5.23–6.41 wt.%), FeO (10.15–14.09 wt.%), and Al2O3 (11.75–13.16 wt.%) and con-
tain minor amounts of Na2O (2.01–2.62 wt.%) and K2O (1.06–1.30 wt.%; Table S6). The amphibole grains
are classified as kaersutite, given their high TiO2 contents, together with their Mg and K values. This is a
class of amphibole that is restricted to alkaline rocks (Figure 9a; Molina et al., 2009; Ridolfi et al., 2010).
The in situ trace element data for amphibole grains of the Yawa intrusions are listed in Table S7. On a
chondrite‐normalized REE diagram, the amphibole data exhibit minor fractionation between the LREE
and middle rare earth element ([La/Sm]N = 0.78–1.56), but significant fractionation between LREE and
HREE ([La/Yb]N = 4.64–8.46) and between middle rare earth element and HREE ([Sm/Yb]N = 4.96–7.17;
Figure 9b). In addition, primitive‐mantle‐normalized amphibole trace element data exhibit positive Ba, Sr,
and Ti anomalies and negative Th, U, Pb, and Zr anomalies (Figure 9c).

4. Petrogenesis of the Yawa Intrusions
4.1. Physical Conditions During Magma Crystallization

Compositions of amphibole grains have long been used as indicators of the pressure and temperature
conditions of magmatic crystallization, but most geobarometry and geothermometry methods are restricted
to calc‐alkaline systems with the exception of the method proposed by Ridolfi and Renzulli (2012). The crys-
tallization pressures, temperatures, and H2O contents for the parental magma of the Yawa intrusions in
equilibrium with amphibole grains, as estimated using this method, are 387–512 MPa, 928–1013 °C, and
4.3–5.1 wt.%, respectively (Table S5). In addition, titanium contents of zircon are also sensitive to crystalliza-
tion temperature (Ferry & Watson, 2007). The values of αSiO2 = 1 and αSiO2 = 0.69 were used in these calcu-
lations because of the presence of minor ilmenite and absence of rutile in the Yawa intrusions. This yielded

Figure 5. Na2O + K2O versus SiO2 diagram for the Yawa intrusions (total
alkalis vs. silica diagram; Le Maitre, 2002). Data for the Gerba Guracha
volcanic rocks are from Rooney et al. (2014, 2017).
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temperatures of 812–969 °C, with an average of 922 °C (Table S2). These results suggest that the parental
magmas of the Yawa intrusions crystallized in a high‐temperature and H2O‐rich environment.

4.2. Effects of Alteration, Crustal Contamination, and Crustal Contamination

The presence of alteration minerals and variable loss‐on‐ignition values indicate that the rocks were altered
after emplacement (Figures 2b and 2c; Table S4). The potential effects of alteration have been evaluated in
Text S2 and Figure S1 (e.g., Polat et al., 2002), which shows the original concentrations of elements in the
Yawa intrusions have not changed significantly during alteration, with the exception of Rb, Sr, and Ba.
Therefore, these mobile elements are not considered in the discussion below.

Figure 6. Harker diagrams for the Yawa intrusions. Data for the Gerba Guracha volcanic rocks are from Rooney et al.
(2014, 2017), and fields for melts derived from different mantle lithologies are as follows: volatile‐free peridotite (Hirose
& Kushiro, 1993), garnet peridotite (Walter, 1998), peridotite + CO2 (Dasgupta et al., 2007), dry eclogite (Kogiso &
Hirschmann, 2006), carbonated eclogite (Dasgupta et al., 2006), garnet pyroxenite (Hirschmann et al., 2003), and
hornblendite (Pilet et al., 2008).
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Although the Yawa intrusions were emplaced into Paleozoic sedimentary rocks (Figure 1b), we suggest that
crustal contamination played a negligible role in the petrogenesis of the intrusions for several reasons. First,
the Sr‐Nd‐Hf isotopic ratios of the intrusions are relatively uniform, whereas the Lhasa Terrane middle‐
upper crustal rocks, represented by the Amdo orthogneiss and Ningzhong strongly peraluminous granites,
are characterized by very high 87Sr/86Sr (>0.730) and low εNd(t) (less than −7; Figure 8a; Harris et al.,
1988; Liu et al., 2006; Zhu et al., 2009). Therefore, minor crustal contamination would have resulted in a
marked increase in the 87Sr/86Sr values and decrease in the εNd(t) values of the Yawa intrusions, as is the case
for the Panjal Traps, which were contaminated by Himalayan basement (Shellnutt, 2018; Figure 8a). Second,
the Yawa intrusions have low Th/Nb and high Nb/La ratios and lack negative Nb‐Ta anomalies on
primitive‐mantle‐normalized trace element plots (Figure 7b). In addition, inherited zircon grains are absent,
and the analyzed zircon grains have uniform and positive εHf(t) values (Figure 4; Table S3) and mantle‐like
zircon δ18O values (5.04‰–5.76‰; Figure 4), which are indicative of crystallization from a homogeneous
magma derived from the mantle with negligible crustal contamination (Valley, 2003).

Consequently, the considerable range in major element contents (e.g., FeOT, Na2O, Al2O3, CaO, TiO2, and
SiO2), as well as the clear linear correlations in Harker diagrams (Figure 6), indicates that crystal fractiona-
tion is themost suitable mechanism to explain these geochemical variations. The lack of negative Eu anoma-
lies (Figure 7a) suggests negligible fractionation of plagioclase, which may have been suppressed by the high
H2O contents of the parental magma as inferred from the amphibole compositions. The negative correla-
tions between MgO and SiO2, TiO2 and SiO2, and FeOT and SiO2 indicate that minerals including clinopyr-
oxene, amphibole, and Fe‐Ti oxides were fractionated from the parental magmas of the Yawa intrusions. As
the fractionation of amphibole can change the silica contents and abundances of many trace elements in a
residual magma, in the following discussion of the potential mantle source composition, only rocks with

Figure 7. (a) Chondrite‐normalized rare earth element and (b) primitive‐mantle‐normalized trace element patterns for
the Yawa intrusions. Normalizing values are from Sun and McDonough (1989), and data for the Gerba Guracha volca-
nic rocks are from Rooney et al. (2014, 2017).

Figure 8. (a) Whole‐rock 87Sr/86Sri versus εNd(t) and (b) εNd(t) versus εHf(t) diagrams for the Yawa intrusions. Data
sources are as follows: Pikang granite from Zhu et al. (2009), Lhasa middle‐upper continental crust is the Ningzhong
strongly peraluminous granites and Amdo orthogneiss (Liu et al., 2006; Xu et al., 1985), ~273‐Ma Naqu mafic rocks are
from Chen et al. (2017), Qiangtang mafic rocks from Zhang and Zhang (2017), ~260 Ma Selong Traps from Zhu et al.
(2010), Panjal traps from Shellnutt, 2018), and mantle array from Chauvel and Blichert‐Toft (2001).
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>5 wt.% MgO or >45 wt.% SiO2, and trace element ratios that are relatively insensitive to crystal fractiona-
tion (e.g., Zr/Nb, Nb/Ta, and Zr/Hf) are considered.

4.3. Amphibole‐Rich Lithospheric Mantle Composition?

The generally low SiO2 and moderate MgO contents, coupled with the mantle‐like zircon δ18O values, for
the Yawa intrusions suggest their magmas were derived by direct partial melting of the mantle.
Specifically, the Yawa intrusion samples with relatively high MgO values are basanitic and display lower
SiO2 and MgO values than experimental melts of volatile‐free peridotite (Figures 4 and 5), indicating that
pure peridotitic mantle is not a suitable source (Figure 6; e.g., Hirose & Kushiro, 1993; Walter, 1998). In addi-
tion to peridotite, experiments have shown that the followingmantle compositions can be the source of alka-
line SiO2‐undersaturated melts: (1) silica‐deficient pyroxenite‐eclogite (e.g., Dasgupta et al., 2006;
Hirschmann et al., 2003; Kogiso et al., 2003; Kogiso & Hirschmann, 2006; Lambart et al., 2016); (2) domains
dominated by amphibole or phlogopite veins (Pilet et al., 2008); and (3) carbonated peridotite (e.g., Dasgupta
et al., 2007; Hirose, 1997). Numerous experiments have shown that partial melting of silica‐deficient
pyroxenite‐eclogite, which is either nominally anhydrous or contains CO2, can potentially explain the low
SiO2 contents of alkaline rocks (e.g., Dasgupta et al., 2006; Keshav et al., 2004). However, such melts should
have significantly lower K2O contents (<0.2 wt.%) than those of the Yawa intrusions (Figure 6f; Dai et al.,
2014, 2017; Pilet et al., 2008). Therefore, a silica‐deficient pyroxenite‐eclogite source cannot account for
the chemical composition of the alkaline Yawa intrusions. Carbonated peridotite has been considered as
another possible source for strongly SiO2‐undersaturated basalts (Dasgupta et al., 2007). However, melts
derived from carbonated peridotite are characterized by high CaO/Al2O3, Zr/Hf, and Nb/Ta (Figures 10a

Figure 9. (a) Mg# versus Ti, (b) chondrite‐normalized rare earth element, and (c) primitive‐mantle‐normalized trace
element diagrams for amphibole grains from the Yawa intrusions. Normalizing values are from Sun and McDonough
(1989). Compositions of amphibole phenocrysts in the Rhon alkali basalts and vein amphibole in mantle peridotite are
shown for comparison (data from Mayer et al., 2014, and references therein). The trace element concentration of melt in
equilibrium with amphibole was calculated using the equation for fractional crystallization (Cs = C0 × D × FD–1).
This plot only shows the calculated result using average trace element concentrations for amphibole, as given in Table S6,
although data for K were determined by electron microprobe (Table S6). The Kd values of amphibole/melt vary consid-
erably with melt composition, temperature, and pressure (see the “Geochemical Earth Reference Model” homepage;
http://www.earthref.org/). Tominimize this uncertainty, the Kd values for amphibole/melt used here are basedmainly on
experiments on a hydrous basanitic magma under a broad range of conditions (Adam & Green, 2006), apart from those of
heavy rare earth elements and K that are from Bédard (2006) and Kelemen et al. (2004), respectively.
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and 10b), and low TiO2 (<1.5 wt.%) and K2O (<0.2 wt.%) contents, which are not observed for the Yawa
intrusions (Table S4).

In fact, peridotite with a primitive mantle composition is too depleted in TiO2 to account for the high TiO2

contents of most alkaline basalts (Prytulak & Elliott, 2007), and the breakdown of Ti‐rich minerals (e.g.,
amphibole and/or phlogopite) in the mantle may be necessary to generate high‐TiO2 melts. An amphibole
and/or phlogopite‐bearing source can also account for the characteristic K depletion with respect to primi-
tive mantle (Figure 7b; Furman & Graham, 1999; Späth et al., 2001). The abundant amphibole and calcu-
lated melt H2O contents also indicate that “wet melting” of an enriched mantle domain with abundant
hydrous mineral phases occurred during formation of the Yawa magmas. The low MgO contents of mafic
alkaline rocks (e.g., the Yawa intrusions) are not solely the result of crystal fractionation but may also indi-
cate the involvement of hydrous‐mineral‐bearing nonperidotitic sources (e.g., Foley et al., 1999; Mayer et al.,
2013; Pilet et al., 2008; Figure 6). Melting of mantle containing phlogopite will result in potassic and ultra-
potassic magmas with elevated Rb/Ba ratios, whereas sodic magmas with low Rb/Ba ratios are likely to form
by the partial melting of amphibole‐bearing mantle (e.g., Furman & Graham, 1999; Pang et al., 2015;
Rosenthal et al., 2009). The high Na2O/K2O ratios (1.18–4.28; Table S4) of the Yawa intrusions would appear
to reflect derivation from amphibole‐rich lithospheric mantle, whereas the high Rb/Ba ratios are possibly
indicative of phlogopite in the source. However, it must be noted that the original Rb and Ba abundances
of the Yawa intrusions have been modified by alteration (Text S2; Figure S1). Instead, melts calculated to
be in equilibrium with amphibole have lower Rb/Ba ratios, consistent with the melting of amphibole‐
bearing mantle (Figures 9c and 10c). This petrogenetic model is further supported by the similarity in geo-
chemical compositions of experimental melts of amphibole‐rich lithologies (Figures 5, 9c, and 9d), the
amphibole‐bearing lithospheric‐mantle‐derived Gerba Guracha volcanic rocks from the western
Ethiopian Plateau, and the Yawa intrusions (Figure 4–6); Rooney et al., 2014, 2017). However, some of

Figure 10. (a) Zr/Hf versus Nb/Ta, (b) La/Yb versus CaO/Al2O3, (c) (La/Yb)N versus (Rb/Ba)N, and (d) (La/Yb)N versus
(K/La)N diagrams for the Yawa intrusions, showing the features of the source rocks. The red five‐pointed stars in
(a) and (b) are representative of the composition of average carbonatites from Hoernle et al. (2002) and Bizimis et al.
(2003). In (c) and (d), the data for hornblendite, cpx‐hornblendite, and hornblendite + DMM (depleted mantle) are from
Pilet et al. (2008). The forward modeling results of these lithologies are shown for comparison, which generally
overlap with the experimentally determined values, apart from the higher (La/Yb)N values of garnet‐involved melting.
The modal and melting proportions, and partition coefficients used in the partial melting forward modeling, are
summarized in Table S8. DMM = depleted mantle.
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the Yawa samples have obviously higher (K/La)N ratios than pure hornblendite‐derived melts (Figure 10d),
which might have resulted from mixing with low‐degree melts of surrounding peridotite (e.g., Dai et al.,
2014; Ma et al., 2011). However, this hypothesis is unlikely because the required proportion of peridotite‐
derived melt is too high (up to 90%; Figure 10d). Both experimental studies and natural mantle xenoliths
show that clinopyroxene‐rich hornblendite (Cpx‐hornblendite) is an important lithology that forms
during mantle metasomatism (e.g., Pilet et al., 2008, 2011). Cpx‐hornblendite‐derived melt will have a
similar major and trace element composition to pure hornblendite‐derived melt, apart from the K/La ratio
(Pilet et al., 2008; Figure 10d). A binary mixing model using experimental data for pure hornblendite and
cpx‐hornblendite can account for the (K/La)N variations of the Yawa intrusions (Figure 10d). In this case,
the melting must have occurred in the lithospheric mantle (Figure 11), as it has been shown
experimentally that amphibole is only stable at temperatures of 970–1170 °C and pressures of 1–3 GPa
and thus does not exist in the convecting asthenospheric mantle (e.g., Frost, 2006; Green et al., 2010).

4.4. Formation of the Amphibole‐Rich Lithospheric Mantle

Amphibole in the lithospheric mantle can be formed by the interaction of melts‐fluids percolating through
preexisting peridotitic lithospheric mantle (disseminated) or as cumulates from these melts‐fluids (veins).
The melts‐fluids may be related to paleo‐subduction events (e.g., Dai et al., 2014, 2017; Rooney et al.,
2014; Tappe et al., 2016; Zheng, 2012) or low‐degree asthenospheric melting during incipient thermal

Figure 11. (a) Paleogeographic reconstruction showing the locations of Asian continental blocks on the Gondwana mar-
gin during the late‐middle Permian (modified from Metcalfe, 2011, 2013). (b) Schematic illustration of the geodynamic
setting of the Yawa intrusions. Abbreviations: WC=Western Cimmerian; NQ=North Qiangtang; SQ = South Qiangtang;
L = Lhasa; S = Sibumasu; IYZSZ = Indus‐Yarlung‐Zangbo Suture Zone.

10.1029/2018JB016281Journal of Geophysical Research: Solid Earth

ZENG ET AL. 2574



perturbation of themantle (e.g., Pilet, 2015). Amphibole that forms by the twomechanisms generally has the
same major element composition (e.g., Mayer et al., 2014; Pilet, 2015; Pilet et al., 2008, 2011), but amphibole
that precipitates in veins cutting peridotites has lowerMg# values than amphibole disseminated in peridotite
as intergranular minerals (Figure 9a; Soder et al., 2016, and references therein). Low‐Mg# amphibole prefer-
entially incorporates Nb over Zr and Zr over Hf, leading to lower Zr/Nb and higher Zr/Hf ratios in vein
assemblages (Tiepolo et al., 2001). In addition, low‐Mg# amphibole has similar Nb and Ta partition coeffi-
cients (DNb/Ta ~ 1). As the composition of the melt derived from a metasomatic mantle lithology would be
controlled mainly by amphibole composition (e.g., Molina et al., 2009; Pilet et al., 2008, 2011; Rooney
et al., 2014, 2017), the low MgO, Mg#, Zr/Nb, and Nb/Ta values; high Zr/Hf values; and chondritic Nb/Ta
ratios for the Yawa intrusions are indicative of low‐Mg# amphibole of cumulate origin in the mantle source.

The estimated model ages of the Yawa intrusions based on whole‐rock Nd‐Hf and zircon Hf isotopic data are
850–500Ma. This was a significant period in the assembly of Gondwana. If the amphibole was formed by the
percolation of paleo‐subduction‐related melts‐fluids into the lithospheric mantle at this time, their presence
within the mantle for an extended period would require the melts‐fluids to have existed in a stable region.
This is plausible, as the early Ordovician was a period of tectonic quiescence (i.e., no thermal anomalies
or extension; Metcalfe, 2013). However, given that slab‐derived fluids‐melts interacting with mantle perido-
tite are generally chromatographic in nature (e.g., Shaw et al., 2007; Stein et al., 1997) and there is greater
fractionation of Lu/Hf than Sm/Nd ratios relative to the source in amphibole‐rich cumulates (Pilet et al.,
2011), an extended time period would result in Hf‐Nd isotope decoupling, as observed in some mantle xeno-
liths and amphibole‐rich mantle rocks (e.g., Rooney et al., 2014; Tappe et al., 2016). This is not observed for
the Yawa intrusions (Figure 9b). Therefore, we suggest that the amphiboles in the mantle source of the Yawa
intrusions were cumulates from low‐degree asthenospheric melts in the lithospheric mantle.

5. Implications
5.1. Continental‐Rift Extensional Setting for the Lhasa Terrane During the Permian?

Globally, Permianmagmatismwas predominantly intraplate volcanism related tomantle plume activity and
the breakup of Gondwana (e.g., Shellnutt, 2018), but there is an ongoing debate as to the Permian tectonic
setting of the Lhasa Terrane. The Qiangtang and Lhasa terranes are traditionally regarded as having been
connected and aligned N‐S and drifted northward from the northern passive margin of the Indian Plate dur-
ing the Permian‐Triassic, which led to the opening of the Meso‐ and Neo‐Tethys oceanic basins, respectively
(e.g., Chen et al., 2017; Gehrels et al., 2011; Metcalfe, 2002, 2011; Yin & Harrison, 2000). However, studies of
Permian igneous rocks have led some researchers to suggest that the Lhasa Terrane was part of a
subduction‐collision orogenic system during the Permian, whereas the Himalayan and Qiangtang terranes
were in a continental rift extensional setting at this time (Stampfli & Borel, 2002; Zhu et al., 2009, 2010,
2013). According to this hypothesis, the Lhasa Terrane had either drifted away before the Permian and
was an isolated microcontinent within the Paleo‐Tethys Ocean (Ran et al., 2012; Yang et al., 2009; Zhu
et al., 2009, 2010) or part of a subduction‐collision system situated along the active margin of the northern
Australian Plate during the Permian to Early Triassic (Metcalfe, 2013; Zhu et al., 2009, 2010). Further evi-
dence for the microcontinent hypothesis includes the discovery of relict Paleo‐Tethys oceanic lithosphere
represented by the late Carboniferous‐Permian Sumdo oceanic eclogite in the Lhasa Terrane (Figure 1a;
Chen et al., 2009; Yang et al., 2009), paleomagnetic data for lower Permian strata showing that the Lhasa
Terrane drifted from the Southern to Northern Hemisphere rather than staying attached to the northern
margin of Gondwana (Ran et al., 2012), and the biostratigraphic differences between Paleozoic sedimentary
strata in the Lhasa and Himalayan terranes (Zhang et al., 2013). However, irrespective of the actual tectonic
setting, we favor that the Lhasa Terrane was attached to the northern margin of Gondwana (close to the
Indian or Australian plate) in the Permian for the following reasons. First, the diagnostic features of the
Gondwana supercontinent (i.e., glacial diamictites and cold‐ or cool‐water faunas) are present in the early
Permian strata of the Lhasa, Qiangtang, and Himalayan terranes. Moreover, the stratigraphy and detrital
zircon provenance of these strata are generally similar in all cases (Fan et al., 2017; Gehrels et al., 2011;
Jin et al., 2015; Metcalfe, 2002, 2011, 2013). The presence of both cold‐ and warm‐water fauna in the
Lhasa Terrane was potentially a result of climate change (e.g., Fielding et al., 2008; Isbell et al., 2012;
Jin et al., 2015). Second, the Permian pole of the Lhasa Terrane remains uncertain because the relevant
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paleomagnetic data are sparse and the studied rocks are generally remagnetized (e.g., Ali et al., 2013; Xu
et al., 2015). In fact, high‐precision paleomagnetic data for Early Jurassic volcanic‐sedimentary rocks in
the southern Lhasa Terrane suggest it drifted away from Gondwana during the Triassic rather than the
Permian (Li et al., 2016, and references therein). This is consistent with the occurrences of exotic Permian
limestone from the Lhasa Terrane in Triassic sedimentary rocks within the Indus‐Yarlung‐Tsangpo
Suture Zone, hinting that separation of the Lhasa Terrane from Gondwana occurred from the late
Permian to Triassic. Third, field observations indicate that the Sumdo eclogite is probably not autochtho-
nous (Gehrels et al., 2011; Zhang & Tang, 2009).

Although the arc‐type geochemical features of Permian basaltic rocks in the Lhasa Terrane are possibly in
contrast to those with rift‐type features in the Himalayan and Qiangtang terranes, the Permian rocks in pre-
vious studies lack high‐quality geochronological constraints (Figure 1a; Zhu et al., 2010). Notably, recent
1:50,000 geological mapping has revealed that the Permian Nixiong (Dibucuo) and Jiangrang mafic rocks
are late‐stage intrusions, rather than being interlayered with lower‐middle Permian sedimentary strata
(Chengdu Institute of Geology and Mineral Resources (CIGMR), 2017). In addition, the petrographic char-
acteristics (i.e., biotite‐rich with alkali feldspar megacrysts), zircon εHf values (−4.5 to +1.9), and occurrence
(i.e., xenoliths in Early Cretaceous granites; Figure 4a; Zhu et al., 2009) of the Pikang granites differ from
those expected for S‐type granites. Rocks with these features are more likely to have been derived by partial
melting of sedimentary rocks, triggered by underplated mantle‐derived rocks, and can form in various
tectonic settings. Therefore, combined with the rare ~300‐ to 260‐Ma detrital zircon grains in the
Permian‐Triassic sedimentary rocks of the Lhasa Terrane (Fan et al., 2017; Gehrels et al., 2011; Li et al.,
2014), there is no solid evidence from Permian igneous rocks for a subduction‐collisional setting for the
Lhasa Terrane during the middle‐late Permian.

The Yawa intrusions investigated in this study are the only confirmed Permian mafic igneous rocks in the
Lhasa Terrane, which can shed further light on the tectonomagmatic evolution of this region. Their
kaersutite‐bearing, alkaline, ocean island basalt‐type geochemical characteristics and high crystallization tem-
peratures are evidence for intraplate volcanism during this period (Figures 1, 4, and 6); Tables S2 and S6).
Despite the low solidus temperatures of hydrous metasomatic veins, lithospheric extension or a heat source
is still required to trigger partial melting. Thus, the formation of continental basanitic rocks is related mainly
to continental rifting, mantle plumes, and upwelling asthenosphere caused by orogenic collapse or litho-
spheric delamination in a post‐collisional environment but is extremely rare in arcs (e.g., Dai et al., 2014;
Ma et al., 2011; Mayer et al., 2014; Pang et al., 2015; Pilet, 2015; Rooney et al., 2014, 2017). The asthenospheric
mantle or deep mantle plume needs to upwell sufficiently to melt at high degrees, if partial melting of the
Lhasa lithospheric mantle was triggered by heating, because the amphibole in the source of the Yawamagmas
requires melting at shallow levels (e.g., Frost, 2006; Green et al., 2010). However, the limited Permian intra-
plate volcanic rocks, and particularly the absence of asthenospheric melts in the Lhasa Terrane, indicate
the Yawa intrusions were generated without much thermal perturbation (e.g., Ma et al., 2011). The relatively
“cold”melting scenario is consistent with the formation mechanism of amphibole in our petrogenetic model.
In addition, the continuous limestone‐dominant deposition during the whole Permian in the Lhasa Terrane
indicates no crustal uplift (e.g., Jin et al., 2015; Wu et al., 2014, 2017; Xie et al., 2010; Zhang et al., 2014), which
would be expected in postcollisional extensional and mantle plume settings. Moreover, there is a transition
from limestone‐dominant Permian strata to thick clastic Early Triassic strata, reflecting the development of
a rift‐related basin at a passive margin (Jin et al., 2015; Wu et al., 2014, 2017; Yin & Harrison, 2000).
Furthermore, rare ~300‐ to 260‐Ma detrital zircon grains in the Permian‐Triassic sedimentary rocks of the
Lhasa Terrane would be expected for a continental rift setting. Therefore, we propose that the formation of
the Yawa intrusions was related to passive extension of the continental lithosphere of the Lhasa Terrane.

5.2. Initial Rifting of the Lhasa Terrane From the Northern Margin of Gondwana

The Lhasa Terrane was in a continental rift setting during the late middle Permian, which is in contrast to
the active margin of northern Australia at this time, where abundant Permian arc‐type volcanic rocks were
erupted and a tectonic unconformity formed between late Permian and Triassic sedimentary strata (e.g.,
Crowhurst et al., 2004; Hill & Hall, 2003; Metcalfe, 2013; Zhu et al., 2013). Therefore, it would appear to
be more appropriate to place the Lhasa Terrane in the Permian‐Early Triassic rift‐drift system on the north-
ern margin of the Indian Plate in the Gondwana supercontinent (Figure 11a), particularly given that the rift‐

10.1029/2018JB016281Journal of Geophysical Research: Solid Earth

ZENG ET AL. 2576



related igneous rocks and structures in the northern Australian Plate formedmainly during the Late Jurassic
(Ali et al., 2013; Crowhurst et al., 2004). This hypothesis is possibly inconsistent with the different
Proterozoic detrital zircon age populations observed in Paleozoic sedimentary strata in the Lhasa
(~1,170 Ma) and Qiangtang‐Himalayan terranes (~950 Ma), suggesting that the Lhasa Terrane drifted away
from the Australian Plate rather than the Indian Plate (e.g., Zhu, Zhao, Niu, Dilek, et al., 2011). However,
among the Gondwana‐derived terranes or plates, the Australian Plate is not a unique source for the distinct
~1,170‐Ma detrital zircon population found in Paleozoic strata of the Lhasa Terrane, which could have also
been sourced from East African orogenic belts before and during the assembly of Gondwana (e.g., Zeng et al.,
2018; Zhang et al., 2012). This view is supported by a recent study revealing that Permian strata in the Lhasa
Terrane contains both ~950‐ and ~1,170‐Ma detrital zircon populations (Fan et al., 2017).

More importantly, conditions for the formation of the Yawa intrusions in the Lhasa Terrane at this time
include the lowmelting temperature of the amphibole‐rich lithospheric mantle, as inferred from the amphi-
bole thermobarometer and whole‐rock geochemistry. These data, in combination with the lack of evidence
for significant continental subsidence or uplift during the middle‐late Permian (e.g., Wu et al., 2017; Zhang
et al., 2014), indicate limited extension of the continental lithosphere during this period. Therefore, we sug-
gest the Yawa intrusions formed due to initial rifting of the lithospheric mantle (Figure 11b). Partial melting
would have facilitated lithospheric rifting, which may have gradually led to the breakup of the Lhasa
Terrane, its drift away from Gondwana, and opening of the Neo‐Tethys Ocean during the Early‐Middle
Triassic, as inferred from paleomagnetic studies (Li et al., 2016; references therein) and the presence of
212‐ to 237‐Ma arc‐type igneous rocks in the southern Lhasa Terrane (Wang et al., 2016). However, rift‐
related igneous rocks in the Himalayan Terrane that formed in response to the opening of the Tethys
Ocean were generated mainly during the early Permian, although only the Panjal Traps have been con-
firmed to be of this age by zircon U‐Pb dating (Figure 1a; Shellnutt, 2018; Zhu et al., 2010). Rift‐related rocks
associated with the drift of the Qiangtang Terrane from the northern margin of the Indian Plate were also
formed during the early Permian (~300–279 Ma; Figure 1a; Zhang & Zhang, 2017, and references therein),
which is consistent with paleomagnetic data (e.g., Song et al., 2017). Thus, the age distribution of rift‐related
rocks appears to be inconsistent with the successive separation of the N‐S‐connected Qiangtang and Lhasa
terranes from the Indian part of Gondwana. We suggest that the formation of the Panjal Traps and Abor vol-
canic rocks had no geodynamic relationship with the drift of the Lhasa Terrane (Ali et al., 2013; Metcalfe,
2002; Shellnutt, 2018) or that the Lhasa and Qiangtang terranes were located along‐strike from each other
rather than being “stacked” against northern Great India as proposed by Wopfner and Jin (2009). In sum-
mary, the Yawa intrusions provide robust evidence of an extensional tectonic setting for the Lhasa
Terrane during the Permian, which was then part of a continental rift system associated with the breakup
of Gondwana. Our study supports the proposal that the Qiangtang Terrane drifted earlier than the Lhasa
Terrane from the northern margin of Gondwana, which led to the successive opening of the Meso‐ and
Neo‐Tethys oceans, respectively (Figure 11; e.g., Gehrels et al., 2011; Metcalfe, 2011; Song et al., 2017; Yin
& Harrison, 2000; Zhang & Zhang, 2017).

6. Conclusions

The Yawa intrusions were formed at ~262 Ma. This is the first reliably dated example of Permian mafic mag-
matism within the Lhasa Terrane. These intrusions show geochemical characteristics of SiO2‐undersatu-
rated alkaline rocks derived by partial melting of amphibole‐rich lithospheric mantle that subsequently
underwent extensive crystal fractionation. These new data and the regional geology provide evidence for a
continental rifting setting in the Permian and derivation of the Lhasa Terrane from the northern margin
of the Indian Plate during Gondwana breakup. Given that amphibole‐rich lithospheric mantle is susceptible
to melting during the early stages of thermal perturbation of the mantle, we suggest that the Yawa intrusions
were formed at the onset of lithospheric extension associated with initial rifting of the Lhasa Terrane from
Gondwana, which was the precursor to the opening of the Neo‐Tethys Ocean.
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