Neoproterozoic I-type and highly fractionated A-type granites in the Yili Block, Central Asian Orogenic Belt: Petrogenesis and tectonic implications

Fuhao Xiong^a,b, Mingcai Hou^a,c,* , Peter A. Cawood^d, Hu Huang^b,c, Mihai N. Ducea^e,f, Shijun Ni^b

^a State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
^b College of Earth Science, Chengdu University of Technology, Chengdu 610059, China
^c College of Earth and Environment, Chengdu University of Technology, Chengdu 610059, China
^d Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China
^e School of Earth, Atmosphere & Environment, Monash University, Melbourne, VIC 3800, Australia
^f Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA
^g Faculty of Geology and Geophysics, University of Bucharest, Bucharest 010041, Romania

A R T I C L E I N F O

Keywords:
Neoproterozoic
Granites
Petrogenesis
Precambrian evolution
Yili Block

A B S T R A C T

The Yili Block in NW China and NE Kazakhstan is a continental fragment within the Central Asian Orogenic Belt (CAOB). We present a systematic study of whole-rock geochemistry, Sr–Nd–Hf isotopic compositions, and U–Pb geochronology of newly identified Neoproterozoic granitic plutons from the southern Yili Block to further constrain the Neoproterozoic evolution of microcontinents constituting the CAOB. Gneissic, augen, and mylonitized granites yield intrusion ^206^Pb/^238^U ages of 947 ± 4 Ma, 889 ± 5 Ma, and 892 ± 5 Ma, respectively. The gneissic granites display affinities to calc-alkaline, weakly peraluminous, magnesian I-type granites (Mg# = 33–34; FeO^T^/MgO = 3.49–3.59). The augen and mylonitized granites lie on the ferroan, calc-alkaline, highly fractionated A-type granite trend (Mg# = 11–21; FeO^T^/MgO = 6.52–14.58; SiO2 > 74 wt%, 10000*Ga/Al = 2.80–3.26). The markedly enriched Sr–Nd–Hf isotopic compositions of the ca. 947 Ma magnesian I-type granites suggest a derivation from ca. 2.0 Ga MgO-rich basement rocks. The varied initial ^87^Sr/^86^Sr ratios (0.716530–0.720543), chondrite-like rHf(t) values (~2.11 to 0.72), and differentiated incompatible elements of the ca. 890 Ma A-type granites suggest a derivation from partial melting of ca. 1.8 Ga crustal sources, followed by strong fractional crystallization. The Yili Block probably constituted part of an exterior orogen that developed along the margin of the Rodinia supercontinent during the early Neoproterozoic, undergoing a tectonic transition from syn-collisional to post-collisional extension at ca. 890 Ma. This study reveals that crustal reworking played a key role in Neoproterozoic crustal evolution in the Yili Block and that this block has a tectonic affinity to the Central Tianshan Block but is distinct from the Tarim Craton.

1. Introduction

Orogenic belts are the principal sites of growth and recycling of continental crust and provide excellent natural laboratories in which to study linkages between magmatism and tectonic processes (Cawood et al., 2009; DeCelles et al., 2009). The Central Asian Orogenic Belt (CAOB), one of the largest and most complex accretional orogens on Earth, has been extensively studied to constrain its accretionary history (Kröner et al., 2007; Glorie et al., 2011; Long et al., 2011; Wang et al., 2017; He et al., 2018a). Some of the component blocks of the CAOB record a late Mesoproterozoic to early Neoproterozoic evolution that overlaps with the assembly and break-up of the Rodinia supercontinent (Zhang et al., 2012a; Gao et al., 2015; Deygurev et al., 2017; Huang et al., 2017).

However, details of the Precambrian evolution of the CAOB remain unclear, particularly concerning the relationship of its Neoproterozoic tectonic evolution to the Rodinia supercontinent (Lu et al., 2008; Zhang et al., 2009, 2012b; Ge et al., 2014a; Wang et al., 2015a,b; Tang et al., 2016; Chen et al., 2017; Wu et al., 2018). Neoproterozoic magmatism occurred in several Precambrian microcontinents constituting the present southwestern CAOB and in the adjacent Tarim Craton (Fig. 1). Understanding the age and geochemical affinities of this magmatic activity is crucial to constraining the evolution of Rodinia. In contrast to the extensive studies of a number of Precambrian blocks in the CAOB (e.g., Cai et al., 2018, and references therein), the Neoproterozoic magmatism of the Yili Block (or the Kazakhstan–Yili block of Zhou et al., 2018) has received little research attention, which limits understanding of the Precambrian evolution of this block. The few studies...
Fig. 1. (a) Simplified tectonic divisions of eastern Eurasia, showing the location of the Central Asian Orogenic Belt (COAB) (modified after Kröner et al. (2007)); (b) Generalized tectonic framework of the southwestern CAOB and major surrounding units (modified after Levashova et al. (2011)). Data sources: (1) Tretyakov et al. (2011, 2017); (2) Tretyakov et al. (2015); (3) Degtyarev et al. (2008); (4) Pilitsyna et al. (2019); (5) Kröner et al. (2007); (6) Konopelko et al. (2013); (7) Kröner et al. (2012); (8) Glorie et al. (2011); (9) Hu et al. (2010), Wang et al. (2014a), Huang (2017); (10) Wang et al. (2014b); (11) Yang et al. (2008), Long et al. (2011), Gao et al. (2015), Huang et al. (2015b); (12) Wang et al. (2014c, 2017), Gao et al. (2015); (13) Ge et al. (2012, 2013), Zhang et al. (2013 and references therein); (14) Chen et al. (2017), Han et al. (2018 and references therein); (15) Xu et al. (2013); (16) Zhang et al. (2009, 2012a).

Fig. 2. Simplified geological map with sampling locations of the studied Neoproterozoic granites in the southern Yili Block (modified after XBGMR, 1978).
of the Neoproterozoic meta-sedimentary rocks and metamorphic complexes of the Yili Block have yielded contrasting tectonic models, including interpretations that this block has a similar Precambrian history to that of the Central Tianshan Block (Huang et al., 2016; Huang, 2017; He et al., 2018b), that it originated from the Tarim Craton (Qian et al., 2009; Liu et al., 2014), or that it was an independent microcontinent without tectonic affinity to neighbouring blocks (Hu et al., 2000; Liu et al., 2004).

Fig. 3. Field and petrographic photographs of the studied Neoproterozoic granites in the southern Yili Block. (a) Neoproterozoic mylonitized granite; (b) Augen and mylonitized granites; (c) Augen granite; (d) Mylonitized granite; (e) Porphyritic gneissic granite; (f) Augen granite (sample WG-5); (g) Mylonitized granite (sample WG-7); (h) Porphyritic gneissic granite (sample KB10). (Per = Perthite; Mi = Microcline; Pl = Plagioclase; Bi = Biotite; Qz = Quartz; Mus = Muscovite).
Here, we document the petrogenesis of Neoproterozoic granitic plutons in the southern Yili Block through their petrography, whole-rock geochemistry, Sr–Nd–Hf isotopic compositions, and zircon U–Pb geochronology. Results are integrated with data on Neoproterozoic rocks with episodes of reworking during Paleozoic orogenesis (Alexeiev et al., 2011; Cao et al., 2017; Huang et al., 2018).

Fig. 4. Representative CL images of zircons from the studied granites in the southern Yili Block. (a) Sample WG-1 from augen granite; (b) KB05 from mylonitized granite; (c) KB13 from gneissic granite. (Solid and dashed circles represent points analysed for U–Pb and Lu–Hf isotopes, respectively).

3. Field geology and petrography

Neoproterozoic granites in the southern Yili Block crop out along the Nanli fault near Tekesi City (Fig. 2). These granites intrude the Mesoproterozoic Tekesi Group, which comprises mainly quartz-mica schist, phyllite, quartzite, meta-sandstone, and marble. A series of NNE-trending faults in the southern Yili Block are the major contact boundaries between the Neoproterozoic granites and meta-sedimentary rocks (Fig. 2).

Neoproterozoic augen and mylonitized granites crop out in the western part of the study area (Fig. 2) and have sharp contact relationships without any visible baking or quenching at their margins (Fig. 3a–d). The augen granites are characterized by numerous microcline phenocrysts with a matrix mineral assemblage of microcline (30–35 vol%), perthite (20–25 vol%), oligoclase (5–10 vol%), quartz (25–30 vol%), and biotite (5–10 vol%) (Fig. 3f). The mylonitized granites have a fine-grained texture, consisting of microcline (30–35 vol%), perthite (15–20 vol%), oligoclase (5–10 vol%), quartz (20–25 vol%), muscovite (<5 vol%), and biotite (<5 vol%) (Fig. 3g). Some of the augen and mylonitized granites have undergone later sericite alteration. Porphyritic gneissic granites that crop out in the east of the study area are medium to fine grained with phenocrysts of perthite and quartz (Fig. 3e) and are moderately deformed and fractured. The porphyritic gneissic granites comprise perthite (40–45 vol%), oligoclase (10–15 vol%), quartz (25–30 vol%), and biotite (5–10 vol%) with accessory minerals of apatite, zircon, epidote, and opaque mineral oxides (Fig. 3h).

Representative samples were collected for elemental analyses (Fig. 2), including three samples of augen granite (WG-1), mylonitized granite (KB05), and porphyritic gneissic granite (KB13) for zircon dating.

4. Analytical methods

4.1. LA–ICP–MS U–Pb dating of zircons

Zircons were separated using heavy-liquid and magnetic methods. The separated crystals were photographed using an optical microscope, and their internal structures were checked by cathodoluminescence (CL) using an analytical scanning electron microscope (JSM–IT100) connected to a GATAN MINICL system at the State Key Laboratory of Geological Processes and Mineral Resource, China University of Geosciences, Wuhan (GPRM–Wuhan). Imaging conditions included a 10.0–13.0 kV voltage for the electric field and 80–85 µA current for the tungsten filament. The U–Pb isotopic analyses involved laser-
Ablation-inductively coupled plasma-mass spectrometry (LA–ICP–MS) at the GPMR-Wuhan. A GeolasPro laser-ablation system with a COMPexPro 102 ArF excimer 193 nm laser and a MicroLas optical system were employed with an Agilent 7500a ICP–MS instrument. Laser-ablation spot size, frequency, and energy were set to 32 µm, 6 Hz, and ∼60 mJ, respectively. Each analysis incorporated a background acquisition of 20–30 s followed by 50 s of sample data acquisition. Zircon 91,500 was used as the external standard for U–Pb dating and was analysed twice for every six sample analyses, yielding a 206Pb/238U age of 1062.9 ± 3.2 Ma (2σ; N = 44; MSWD = 0.04), identical to the age of 1062.4 ± 0.4 Ma recommended by Wiedenbeck et al. (1995). Common Pb correction was not performed because of the low 204Pb.

Fig. 5. Zircon U–Pb concordia diagrams for (a) augen granite (WG-1); (b) mylonitized granite (KB05); and (c) gneissic granite (KB13). Inserts are the histograms of zircon age distributions.
signal. Zircon standard GJ-1 was analysed as an unknown, yielding a weighted mean 206Pb/238U age of 606.5 ± 5.9 Ma (2σ, N = 8, MSWD = 2.2), which is in good agreement with its recommended age of 608.5 ± 0.4 Ma (Jackson et al., 2004). Concordia diagrams were prepared and weighted mean calculations performed using Isoplot/Ex_ver3 (Ludwig, 2003). Instrument operating conditions were as described by Liu et al. (2010).

4.2. Zircon Lu–Hf isotopic analyses

In situ zircon Lu–Hf isotopic analyses were performed on dated grains using a Neptune Plus multicollector (MC)–ICP–MS (Thermo Fisher Scientific, Germany) in combination with a Geolas 2005 excimer ArF laser-ablation system (Lambda Physik, Göttingen, Germany) at the GPMR-Wuhan. Analytical spots were close to, or on the top of, spots used for U–Pb analysis, or at least in the same growth domain as inferred from CL images. The laser beam diameter was 44 μm. Each measurement included 20 s background acquisition followed by 50 s of ablation-signal acquisition. Instrument operating conditions were as described by Hu et al. (2012). Off-line selection and integration of analytical signals were performed using ICPMSDataCal (Liu et al., 2010). Zircon standards 91,500 and GJ-1 were used to check instrument reliability and stability, yielding weighted mean 176Hf/177Hf ratios of 0.282301 ± 0.000010 (2σ, N = 18) and 0.282007 ± 0.000026 (2σ, N = 8), respectively, which are comparable with the recommended values of 0.282308 ± 0.000003 (91500) and 0.282000 ± 0.000005 (GJ-1) (Morel et al., 2008).

4.3. Whole-rock major- and trace-element analyses

Whole-rock samples were crushed in a corundum jaw crusher to 60 mesh. About 60 g was powdered in an agate ring mill to < 200 mesh.
for whole-rock geochemical analysis. Major-element analyses involved standard X-ray fluorescence methods using a Shimadzu Sequential 1800 spectrometer at the GPMR-Wuhan. Precision was better than 4% and accuracy better than 3% for major elements. Measurement procedure and data quality were monitored by repeated analyses (one in eight samples) of USGS standard AGV-2 and Chinese National Standards GSR-1 and GRS-7. Analytical techniques were as described by Ma et al. (2012).

Trace-elements were analysed using an Agilent 7500a ICP–MS at the GPMR-Wuhan. Samples were digested in HF + HNO₃ in Teflon bombs. Analyses of USGS standards AGV-2, BHVO-2, BCR-2, and RGM-2 indicate accuracies better than 5%–10% for most trace elements. Sample digestion and ICP–MS instrumental procedures were as described by Liu et al. (2008).

4.4. Whole-rock Sr–Nd isotopic analyses

Sr–Nd isotopic compositions were determined at the GPMR-Wuhan. Sample powders were spiked with mixed isotope tracers, dissolved in HF + HNO₃ in Teflon capsules, and Sr–Nd separated by conventional cation-exchange techniques. Isotopic measurements were performed using a Finnigan MAT-261 thermal-ionization mass spectrometer. Procedural blanks were < 200 pg for Sm and Nd and < 500 pg for Rb and Sr. Mass fractionation corrections for Sr and Nd isotopic ratios were based on ⁸⁶Sr/⁸⁸Sr = 0.1194 and ¹⁴⁶Nd/¹⁴⁴Nd = 0.7219, respectively. The NBS987 standard measured during the course of the analyses gave a mean ⁸⁷Sr/⁸⁶Sr ratio of 0.710246 ± 0.000004 (2σ, N = 7), and the Jndi-1 standard gave a mean ¹⁴³Nd/¹⁴⁴Nd ratio of 0.512117 ± 0.000003 (2σ, N = 9), which are identical to their recommended values of 0.710241 ± 0.000012 (Thirlwall, 1991) and 0.512115 ± 0.000007 (Tanaka et al., 2000), respectively. Analytical methods, precision, and accuracy are as described by Gao et al. (2004).

5. Results

5.1. Zircon U–Pb geochronology

LA–ICP–MS zircon U–Pb data are given in Supplementary Table S1 and representative zircon CL images with analysis spots are shown in Fig. 4. Although 30 spots were analysed per sample, only those with
Most analysed spots have concordant $^{206}\text{Pb}/^{238}\text{U}$ ages of with oscillatory or broad zoning, and a few have inherited cores granite. Nine analysed spots from Group 2 (sample WG-1) have concordant $^{206}\text{Pb}/^{238}\text{U}$ ages of 894 ± 4 Ma (MSWD = 0.29, N = 10; Fig. 5b) of these 10 spots is therefore interpreted as the crystallization age of the augen granite. Seven analysed spots from the inherited cores have concordant $^{206}\text{Pb}/^{207}\text{Pb}$ ages of 947 ± 4 Ma (MSWD = 0.29, N = 21; Fig. 5e and f), interpreted as being the crystallization age of this gneissic granite.

$\geq 95\%$ concordance were used for interpretation.

Zircons from the augen (sample WG-1) and mylonitized granite (sample KB05) display similar textures and compositions. They are colourless, transparent, or translucent grains. Their lengths are mostly in the range 100–200 µm with aspect ratios of 1:1–3:1. Most grains are euhedral doubly-terminated prismatic crystals with a zoning structure indicative of magmatic origin (Group 1); whereas a few grains are unzoned or dark or exhibit a residual core with corroded margin or zoned rim (Group 2) (Fig. 4a and b). Ten spots in Group 1 of sample WG-1 have concordant $^{206}\text{Pb}/^{238}\text{U}$ ages of 894–883 Ma (Fig. 5a) with high Th/U ratios (0.21–0.89). Group 1 zircons of sample KB05 have concordant $^{206}\text{Pb}/^{207}\text{Pb}$ ages of 884 ± 5 Ma (MSWD = 0.26, N = 11) (Fig. 5c and d; Supplementary Table S1) with a weighted mean age of 883 ± 5 Ma (MSWD = 0.51, N = 10) (Fig. 5a). Zircons from the mylonitized granite (sample KB13) are 100–200 µm in length with aspect ratios of 0.25–1.0. Most grains are euhedral crystals with oscillatory or broad zoning, and a few have inherited cores (Fig. 4c). Most analysed spots have concordant $^{206}\text{Pb}/^{238}\text{U}$ ages of 953–937 Ma (Supplementary Table S1) with a weighted mean age of 947 ± 4 Ma (MSWD = 0.29, N = 21; Fig. 5e and f), interpreted as being the crystallization age of this gneissic granite. Seven analysed spots from the inherited cores have concordant $^{206}\text{Pb}/^{207}\text{Pb}$ ages of 1502–1039 Ma, implying the occurrence of a previous thermal event.

5.2. Whole-rock geochemistry

Results of bulk-rock major- and trace-element analysis results are given in Supplementary Table S2. All the granites have high SiO_2 (72.1–76.6 wt%) and ($\text{K}_2\text{O} + \text{Na}_2\text{O}$) (7.3–8.4 wt%) contents and high A/CA ratios (1.03–1.09; modal Al_2O_3/($\text{CaO} + \text{Na}_2\text{O} + \text{K}_2\text{O}$)), indicating a calc-alkaline, weakly peraluminous affinity (Fig. 6a–d). The gneissic granites have low $\text{FeO}^\text{O}^+/\text{MgO}$ ratios (3.49–5.39) and high $\text{Mg}^\text{#}$ values (33–34; modal 100$^\times\text{Mg}/(\text{Mg} + \text{Fe})$), and therefore resemble magmas of the gneissic granites (Frost and Frost, 2011). The augen- and mylonitized granites have contrasting $\text{FeO}^\text{O}^+/\text{MgO}$ ratios (6.52–14.58) and $\text{Mg}^\text{#}$ values (11–21) to those of the gneissic granites, defining a ferroan granite trend (Fig. 6b).

In chondrite-normalized rare earth elements (REEs) diagrams (Fig. 7a), the gneissic granites exhibit enrichment in light REEs (LREEs) with (La/Yb)$_N$ ratios of 7.21–7.70, strong negative Eu anomalies ($\delta\text{Eu} = 0.37–0.47$), and significant differentiation of LREEs (La/Sm)$_N$ = 3.96–4.06. The mylonitized granites have REEs patterns similar to those of the gneissic granites with ratios (La/Yb)$_N$ = 4.73, and $\delta\text{Eu} = 0.20–0.25$. In contrast, the augen granites display flat REEs patterns with low (La/Yb)$_N$ (1.32–1.92) and (La/Sm)$_N$ (1.66–1.89) ratios (Fig. 7a). All of the granites are characterized by depletion of Nb, Ta, Ba, Sr, P, Eu, and Ti, strong enrichment in large-ion lithophile elements (LILEs), and highly differentiated high field strength elements (HFSEs) in their primitive mantle-normalized trace element patterns (Fig. 7b).

5.3. Sr–Nd–Hf isotopes

Whole-rock Sr and Nd isotopic compositions are presented in Supplementary Table S3. Initial Sr and Nd isotopic ratios and $\varepsilon\text{Nd}(t)$ values of these granites were calculated using their crystallization ages. The studied granites all show identical Nd isotopic compositions characterized by relatively low initial $\varepsilon^{143}\text{Nd}/^{144}\text{Nd}$ ratios of 0.511190–0.511275 and $\varepsilon\text{Nd}(t)$ values of -5.44 to -3.75. The augen
and mylonitized granites display a wide variation in initial $^{87}\text{Sr}/^{86}\text{Sr}$ ratios (0.703921–0.745403), whereas the gneissic granites have a relatively narrow range (0.718526–0.723162). As the Nd–Hf isotopic compositions (presented below) are relatively uniform, the abnormally high and low initial $^{87}\text{Sr}/^{86}\text{Sr}$ ratios of the augen and mylonitized granites (0.743550–0.745403 and 0.703921, respectively) may reflect the influence of low grades of deformation and metamorphism (Barovich and Patchett, 1992; Ma and Liu, 2001). These data were therefore excluded from the discussion of petrogenesis. All of the granites have similar Nd model ages (TDM) of 1.96–1.88 Ga, similar to the age of basement rocks in the Tianshan Block (Fig. 8; Hu et al., 2000; Kröner et al., 2017; Wang et al., 2017).

6. Discussion

6.1. Petrogenesis of the two granite groups of the Yili Block

Zircon U–Pb dating reveals two periods of Neoproterozoic granitic magmatism in the southern Yili Block, represented by the ca. 947 Ma gneissic granite in the eastern part of the study area and the ca. 890 Ma augen and mylonitized granites in the western part. The gneissic granites are magnesian with higher Mg# values (33–34) than those of the augen and mylonitized granites (Mg# = 1–21) and belong to the ferroan granite series (Fig. 6b). This contrast indicates different potential source regions and/or petrogenetic processes. The absence of Al-rich minerals, low A/CNK ratios (< 1.1), negative correlation between P2O5 and SiO2, and positive correlation between Th and Rb preclude the gneissic granites from being S-type granites (Figs. 3 and 6; Chappell and White, 1992; Chappell, 1999). Furthermore, the gneissic granites have low Ga/Al and FeO/TiO2/MgO ratios and high MgO, FeO, and TiO2 contents, and therefore resemble calc-alkaline, weakly peraluminous I-type granites (Whalen et al., 1987; Frost and Frost, 2011; Wu et al., 2017; Fig. 10). In contrast, the augen and mylonitized granites have high SiO2 (> 74 wt%) and alkali (Na2O + K2O = 7.70–8.39 wt%) contents, high FeO/TiO2/MgO and 10000*Ga/Al (> 2.8) ratios, and low CaO, Al2O3, Ba, and Sr contents, indicating a similarity to highly fractionated calc-alkaline A-type granites (Whalen et al., 1987; Frost and Frost, 2011; Wu et al., 2017; Fig. 10).
Compared with results of experimental petrological studies (Fig. 11), all the samples have high SiO$_2$ contents, high K$_2$O/Na$_2$O and Al$_2$O$_3$/(MgO + FeOT) ratios, moderate CaO/(MgO + FeO T) and (Na$_2$O+K$_2$O)/(MgO + FeOT + TiO$_2$) ratios, relatively low Mg# and (MgO + FeOT + TiO$_2$) values, low εNd(t) values (−5.44 to −3.75), and high initial 87Sr/86Sr ratios (0.716530–0.720543 and 0.718526–0.723162 for ca. 890 Ma and ca. 947 Ma granites, respectively). These geochemical characteristics suggest a derivation from the partial melting of crustal metagreywackes (Patiño Douce and Johnston, 1991; Patiño Douce and Beard, 1996). The following observations indicate that there is no unequivocal evidence for a contribution of mantle materials: (1) an addition of mafic components would produce rocks with moderate SiO$_2$ contents (Stern and Kilian, 1996); (2) the mantle has high Zr/Hf (34–42) and Nb/Ta (14.2–15.9) ratios (Sun and McDonough, 1989; Green, 1995), and an addition of mantle materials would enhance those ratios, which is not the case for the studied granites; and (3) there is no diorite–granodiorite–granite association in the studied area, which is inconsistent with a magma mixing and/or fractional crystallization model.

Notably, the gneissic granites have older model ages (ca. 2.0 Ga) and much higher Mg$^+$ values than those of the augen and mylonitized granites at the same SiO$_2$ contents, which indicates that the source of the gneissic granites was relatively enriched in MgO. In contrast, the chondrite-like εHf(t) values (−2.11 to 0.72) and relatively young Hf model ages of the ca. 890 Ma augen and mylonitized granites suggest their derivation from ca. 1.8 Ga metagreywackes with a weak juvenile crust signature. This conclusion is consistent with results of studies of Precambrian basement rocks of the Yili Block (e.g., Wenquan complex and Kailaketi Group), in which the amphibolites and meta-sedimentary rocks display an obvious age peak at ca. 1.8–1.7 Ga with high positive εNd(t) and εHf(t) values (Figs. 8a and 9a), thereby indicating the presence of late Paleoproterozoic juvenile crustal materials (Hu et al., 2000; He et al., 2015a; Huang et al., 2016). In addition, the occurrence of small amounts of inherited zircons (1502–979 Ma; Fig. 5; Supplementary Table S1) indicates a minor contribution of Mesoproterozoic rocks to the petrogenesis of the studied granites.

Furthermore, the contrast in REE distribution patterns between the augen ((La/Yb)$_N$ = 1.24–1.81) and mylonitized granites ((La/Yb)$_N$ = 6.46–9.43) indicates that fractionation also played an important role in producing their chemical variations. This is further confirmed by their marked negative Eu, Ba, Sr, Na, Ta, P, and Ti anomalies (Fig. 7). Through geochemical modelling (Ersoy and Helvacı, 2010), the main fractionating phases of K-feldspar, plagioclase, and biotite may be included in our samples, as indicated by the positive Ba–Sr and δEu–Sr correlations (Fig. 12a and b). As shown in Fig. 12, the negative Na, Ta, P and Ti anomalies can be interpreted as reflecting fractionation of ilmenite, allanite, and possibly apatite, with such fractionation also being consistent with their petrographic features (Fig. 3).

6.2. Implications for the early Neoproterozoic tectonic evolution of the Yili Block

The magma sources and processes involved in the generation of
granites, as reflected by their geochemical signatures, show a significant correlation with tectonic settings (Pearce, 1996). The bulk-rock major- and trace-element compositions of the ca. 947 Ma gneissic granites of the Yili Block resemble those of syn-collisional granites (Fig. 13), whereas the ca. 890 Ma granites display geochemical affinities similar to those of extension-related granites. The ca. 890 Ma granites have high Y/Nb and Yb/Ta ratios (Fig. 13c and d) similar to those of A2-type granites (Eby, 1992), indicating that their petrogenesis is related to post-collisional extension, as for many highly fractionated granitoids.

The ages and tectonic interpretations for the analysed samples are in accordance with data from regional magmatism and metamorphism in the Yili Block and adjacent blocks within the CAOB. These blocks are characterized by large-scale linearly distributed ca. 1000–890 Ma I- and S-type granitoids (Figs. 1b, 14, and 15). Such trends resemble those convergent, continental margin accretionary orogens and may therefore have been related to the assembly of Rodinia. Some I-type granitoids within these CAOB blocks display high-K calc-alkaline and arc-related geochemical characteristics with enrichment in LREEs and LILEs and depletion of HREEs and HFSEs as observed, for example, in 945 ± 22 Ma biotite granites in Aktau–Yili (Tretyakov et al., 2015), 969 ± 11 Ma granitic gneisses in Chinese Central Tianshan (Yang et al., 2008), and 1045 ± 7 Ma granites in the southern part of Kazakhstan North Tianshan (Kröner et al., 2013). This further confirms the presence of latest Mesoproterozoic to earliest Neoproterozoic subduction-related magmatism in these blocks, which were assembled within the current southwestern CAOB. Furthermore, as shown in Fig. 5, inherited zircons from the studied granites also record a latest Mesoproterozoic to earliest Neoproterozoic tectono-magmatic event, with an age peak of ca. 985 Ma recorded in sample KB05. Subsequent tectono-magmatic activities, including anatexis-related migmatization (926–909 Ma) of basement rocks (i.e., Wenquan Group), S-type granitic magmatism (919–909 Ma), mylonitization (ca. 919 Ma), and greenschist- to amphibolite-facies metamorphism of early Neoproterozoic gneisses, are recognized in the northern Yili Block (Hu et al., 2010; Wang et al., 2014a; Huang, 2017). Such tectonic features are commonly linked to collisional orogenesis (e.g., Brown, 2007; Liou et al., 2009), thus indicating that the Yili Block occupied a syn-collisional setting during ca. 950–900 Ma. The 947–890 Ma granitoids of the Yili Block are mainly I- and S-type, whereas the 890–800 Ma granitoids are mainly A-type (Fig. 15). This shift in characteristics (Supplementary Table S5) likely reflects a tectonic transition from syn-collisional to post-collisional extension associated with Neoproterozoic orogenesis in this region of the CAOB.

Large-scale I- and S-type granitic magmatism in the Yili and adjacent Central Tianshan blocks were synchronous at 960–900 Ma (Fig. 14), indicating a similar history during the early Neoproterozoic. The termination of these igneous activities corresponds to ca. 900 Ma peak high-grade metamorphism in the southwestern CAOB (Wang et al., 2014a; Huang, 2017; Zong et al., 2017). This tectonic transition has also been recorded in Mesozoic–Neoproterozoic strata (i.e., the Tekesi and Kusitai groups) in the southern Yili Block. The Tekesi Group marine
6.3. Crustal reworking and tectonic affinity of the Yili Block during the Neoproterozoic

The studied Neoproterozoic granites have enriched Nd–Hf isotopic compositions, characterized by negative εNd(t) values (−3.75 to −4.45 for the ca. 947 Ma gneissic granites; −4.14 to −5.44 for the ca. 890 Ma augen and mylonitized granites) and negative or chondrite-like εHf(t) values (−6.95 to −1.67 for ca. 947 Ma gneissic granites; −2.11 to 0.72 for ca. 890 Ma granites). Nd–Hf crustal model ages vary within a narrow range with peaks at 2.0 Ga for the ca. 947 Ma gneissic granites, and 1.8 Ga for the ca. 890 Ma granites. The Nd–Hf model ages (Figs. 8a and 9a) recorded here and in other studies of the sedimentary provenance of Paleoproterozoic detrital zircons (e.g., Liu et al., 2014; Huang et al., 2016; Huang, 2017) reveal that the Yili Block may have a Paleoproterozoic basement. The studied granites have marked negative whole-rock εNd(t) and zircon εHf(t) values (Figs. 8 and 9), indicating that reworking of old continental crust was the major mechanism for the Neoproterozoic crustal evolution of the Yili Block.

Inherited zircons (1502–979 Ma) in the studied granites have high positive εHf(t) values (0.70–7.74; Fig. 9a; Supplementary Table S4), referring spot KB13-11 with an age of 1125 Ma and εHf(t) value of −3.19. Most inherited zircons are euhedral with high Th/U ratios of 0.14–1.16, with some grains displaying bright cores with oscillatory zoning surrounded by dark overgrown rims (Fig. 4), indicating magmatic origins. These features, together with results of studies of Mesoproterozoic detrital zircons in the Yili Block (Fig. 9a), suggest that Mesoproterozoic crustal growth events in the Yili Block correspond to 1450–1400 Ma and 1150–1050 Ma magmatic events that occurred in the southern CAOB (e.g., Kröner et al., 2013; He et al., 2018a).

Nd–Hf isotopic compositions of the igneous rocks follow an enriched trend during the period 1000-890 Ma (Figs. 8 and 9), suggesting that crustal reworking played a major role in the evolution of the Yili Block. However, there were multiple crustal growth events after ca. 890 Ma, with the earliest pulse from ca. 830 to 800 Ma being followed by those at ca. 780–720 Ma and 650–630 Ma. These events echo the episodic rifting activity related to the break-up of the Rodinia supercontinent (Zhang et al., 2012b; Han et al., 2018). The evolution from crustal reworking to multiple pulses of juvenile crustal growth is also recorded in Neoproterozoic meta-sedimentary rocks from the Yili Block, in which detrital zircons with ages of 1000–890 Ma display enriched Lu–Hf isotopic compositions, but those with ages < 800 Ma are mostly isotopically depleted. This Lu–Hf isotopic feature is consistent with the Nd isotopic trend of Neoproterozoic igneous rocks in the Yili Block (Fig. 8) and likely reflects a change in the process of crustal evolution.

The Nd–Hf isotopic compositions of the studied granites as well as their inherited zircons indicate that the Yili Block has a basement history and tectonic evolution similar to that of the Central Tianshan Block, in which the 2.2–1.8 Ga Paleoproterozoic basement also underwent juvenile crustal growth during the Mesoproterozoic (Figs. 8 and 9). The tectonic affinities of early Neoproterozoic magmatism in the Yili and adjacent blocks in the southwestern CAOB suggest that they were at or near an active continental margin during the assembly of Rodinia. The situation may have been similar to the Cenozoic orogens of the Tethyan margin of Tibet and to the Andes margin of South America.

In contrast, the Tarim Craton has an Archean basement and lacks evidence for orogeny-related magmatism during 1.0–0.9 Ga and subsequent high-grade metamorphism (ca. 900 Ma) (e.g., Cai et al., 2018; Yang et al., 2018). These differences in basement age and latest Mesoproterozoic–early Neoproterozoic magmatism preclude the possibility that the Yili Block was part of the Tarim Craton during much of the Proterozoic. Furthermore, the absence of Neoorhecan to early Paleoproterozoic magmatism in the Yili Block, in contrast to their occurrence in the Tarim Craton (Figs. 8 and 9), suggests that these two blocks, which are now adjacent, had independent and spatially unrelated histories from the Archean through to the early Neoproterozoic. After ca. 890 Ma, the Tarim Craton had a similar magmatic record to that of the Yili and Precambrian blocks in the southwestern CAOB, characterized by I- and A-type but no S-type granitoids, as well as coeval < 830 Ma rifting-related magmatic rocks (such as mafic dyke swarms, mafic and alkaline complexes, and bimodal igneous rocks) (Zhang et al., 2007a, 2007b, 2017).
Fig. 15. Diagram illustrating the distribution of the Neoproterozoic magmatism in different genetic types from the Yili Block, Central Tianshan Block, and northern Tarim Craton (Data sources: Supplementary Table S3).

2012b, 2013; Lu et al., 2008; Ye et al., 2013; Wang et al., 2014b; Chen et al., 2017). These features indicate that all of these Precambrian blocks were likely spatially associated by ca. 830 Ma during the break-up of the margin of the Rodinia supercontinent.

In summary, the Yili Block has a geological history similar to that of the Central Tianshan Block but differed from that of the Tarim Craton until the final assembly of the Rodinia supercontinent. During the early Neoproterozoic (1000–890 Ma), the Yili Block and Central Tianshan Block represented an Andean-type orogen with the generation of numerous I- and S-type granitoids, in which the reworking of ancient continental crust played a major role in their crustal evolution. In contrast, coeval magmatic records are rare in the Tarim Craton. By the middle Neoproterozoic (not later than 830 Ma), rifting-related magmatism may have marked the end of the early Neoproterozoic orogeny and the beginning of intra-plate tectonic systems.

7. Conclusions

Several conclusions can be drawn from this study of the petrography, geochemistry, and geochronology of Neoproterozoic plutonic rocks in the southern Yili Block and from the synthesis of other studies of Precambrian blocks in the southwestern CAOB, as follows.

(1) I-type granites dated at ca. 947 Ma and highly fractionated A-type granites dated at ca. 892–889 Ma occur in the southern Yili Block and were derived from the partial melting of ca. 2.0 Ga MgO-rich basement rocks and from a ca. 1.8 Ga crustal source, respectively. This suggests that crustal reworking played a major role in the early Neoproterozoic crustal evolution of the Yili Block.

(2) The Yili Block experienced a tectonic transition from syn-collisional to post-collisional extension at ca. 890 Ma, after which the tectonic setting evolved gradually to orogenic intra-plate rifting during the late Tonian.

(3) The Yili Block shares a similar tectonic affinity and evolutionary history to that of the Central Tianshan Block but different from that of the Tarim Craton. The Yili and Central Tianshan blocks were probably part of an early Neoproterozoic orogenic system that developed along the exterior margin of the Rodinia supercontinent.

Acknowledgements

We sincerely thank editor G.C. Zhao, reviewer Kirill E. Degtyarev, and two anonymous reviewers for their constructive comments and suggestions, which substantially improved our manuscript. This study was financially supported by the 973 Program (2015CB453000), the National Natural Science Foundation of China (41602049), and the China Postdoctoral Science Foundation (2015M582529). Cawood acknowledges support from the Australian Research Council Grant FL160100168. Ducea acknowledges support from US National Science Foundation Grant EAR 1725002 and the Romanian Executive Agency for Higher Education, Research, Development and Innovation Funding (PN-III-P4-ID-PCE-2016-0127 and PN-III-P4-ID-PCCF-2016-0014).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.precamres.2019.04.017.

References

Patullo Douce, A.E., Beard, J.S., 1996. Effects of P, f(O2) and Mg/Fe ratio on dehydration melting of model metagreywackes. J. Petrol. 37 (5), 999–1024.

