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A B S T R A C T

The Yili Block in NW China and NE Kazakhstan is a continental fragment within the Central Asian Orogenic Belt
(CAOB). We present a systematic study of whole-rock geochemistry, Sr–Nd–Hf isotopic compositions, and U–Pb
geochronology of newly identified Neoproterozoic granitic plutons from the southern Yili Block to further
constrain the Proterozoic evolution of microcontinents constituting the CAOB. Gneissic, augen, and mylonitized
granites yield intrusion 206Pb/238U ages of 947 ± 4Ma, 889 ± 5Ma, and 892 ± 5Ma, respectively. The
gneissic granites display affinities to calc-alkaline, weakly peraluminous, magnesian I-type granites
(Mg#=33–34; FeOT/MgO=3.49–3.59). The augen and mylonitized granites lie on the ferroan, calc-alkaline,
highly fractionated A-type granite trend (Mg#=11–21, FeOT/MgO=6.52–14.58, SiO2 > 74wt%, 10000*Ga/
Al= 2.80–3.26). The markedly enriched Sr–Nd–Hf isotopic compositions of the ca. 947Ma magnesian I-type
granites suggest a derivation from ca. 2.0 Ga MgO-rich basement rocks. The varied initial 87Sr/86Sr ratios
(0.716530–0.720543), chondrite-like εHf(t) values (−2.11 to 0.72), and differentiated incompatible elements of
the ca. 890Ma A-type granites suggest a derivation from partial melting of ca. 1.8 Ga crustal sources, followed by
strong fractional crystallization. The Yili Block probably constituted part of an exterior orogen that developed
along the margin of the Rodinia supercontinent during the early Neoproterozoic, undergoing a tectonic tran-
sition from syn-collisional to post-collisional extension at ca. 890Ma. This study reveals that crustal reworking
played a key role in Neoproterozoic crustal evolution in the Yili Block and that this block has a tectonic affinity
to the Central Tianshan Block but is distinct from the Tarim Craton.

1. Introduction

Orogenic belts are the principal sites of growth and recycling of
continental crust and provide excellent natural laboratories in which to
study linkages between magmatism and tectonic processes (Cawood
et al., 2009; DeCelles et al., 2009). The Central Asian Orogenic Belt
(CAOB), one of the largest and most complex accretionary orogens on
Earth, has been extensively studied to constrain its accretionary history
(Kröner et al., 2007; Glorie et al., 2011; Long et al., 2011; Wang et al.,
2017; He et al., 2018a). Some of the component blocks of the CAOB
record a late Mesoproterozoic to early Neoproterozoic evolution that
overlaps with the assembly and break-up of the Rodinia supercontinent
(Zhang et al., 2012a; Gao et al., 2015; Degtyarev et al., 2017; Huang
et al., 2017).

However, details of the Precambrian evolution of the CAOB remain
unclear, particularly concerning the relationship of its Neoproterozoic
tectonic evolution to the Rodinia supercontinent (Lu et al., 2008; Zhang
et al., 2009, 2012b; Ge et al., 2014a; Wang et al., 2015a,b; Tang et al.,
2016; Chen et al., 2017; Wu et al., 2018). Neoproterozoic magmatism
occurred in several Precambrian microcontinents constituting the pre-
sent southwestern CAOB and in the adjacent Tarim Craton (Fig. 1).
Understanding the age and geochemical affinities of this magmatic
activity is crucial to constraining the evolution of Rodinia. In contrast to
the extensive studies of a number of Precambrian blocks in the CAOB
(e.g., Cai et al., 2018, and references therein), the Neoproterozoic
magmatism of the Yili Block (or the Kazakhstan–Yili block of Zhou
et al., 2018) has received little research attention, which limits un-
derstanding of the Precambrian evolution of this block. The few studies
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Fig. 1. (a) Simplified tectonic divisions of eastern Eurasia, showing the location of the Central Asian Orogenic Belt (COAB) (modified after Kröner et al. (2007)); (b)
Generalized tectonic framework of the southwestern CAOB and major surrounding units (simplified after Levashova et al. (2011)). Data sources: (1) Tretyakov et al.
(2011, 2017); (2) Tretyakov et al. (2015); (3) Degtyarev et al. (2008); (4) Pilitsyna et al. (2019); (5) Kröner et al. (2007); (6) Konopelko et al. (2013); (7) Kröner et al.
(2012); (8) Glorie et al. (2011); (9) Hu et al. (2010), Wang et al. (2014a), Huang (2017); (10) Wang et al. (2014b); (11) Yang et al. (2008), Long et al. (2011), Gao
et al. (2015), Huang et al. (2015b); (12) Wang et al. (2014c, 2017), Gao et al. (2015); (13) Ge et al. (2012, 2013), Zhang et al. (2013 and references therein); (14)
Chen et al. (2017), Han et al. (2018 and references therein); (15) Xu et al. (2013); (16) Zhang et al. (2009, 2012a).
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Fig. 2. Simplified geological map with sampling locations of the studied Neoproterozoic granites in the southern Yili Block (modified after XBGMR, 1978).
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of the Neoproterozoic meta-sedimentary rocks and metamorphic com-
plexes of the Yili Block have yielded contrasting tectonic models, in-
cluding interpretations that this block has a similar Precambrian history
to that of the Central Tianshan Block (Huang et al., 2016; Huang, 2017;

He et al., 2018b), that it originated from the Tarim Craton (Qian et al.,
2009; Liu et al., 2014), or that it was an independent microcontinent
without tectonic affinity to neighbouring blocks (Hu et al., 2000; Liu
et al., 2004).

Fig. 3. Field and petrographic photographs of the studied Neoproterozoic granites in the southern Yili Block. (a) Neoproterozoic mylonitized granite; (b) Augen and
mylonitized granites; (c) Augen granite; (d) Mylonitized granite; (e) Porphyritic gneissic granite; (f) Augen granite (sample WG-5); (g) Mylonitized granite (sample
WG-7); (h) Porphyritic gneissic granite (sample KB10). (Per= Perthite; Mi=Microcline; Pl= Plagioclase; Bi=Biotite; Qz=Quartz; Mus=Muscovite).
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Here, we document the petrogenesis of Neoproterozoic granitic
plutons in the southern Yili Block (Fig. 1) through their petrography,
whole-rock geochemistry, Sr–Nd–Hf isotopic compositions, and zircon
U–Pb geochronology. Results are integrated with data on Neoproter-
ozoic rocks of the region to outline the tectonic and crustal evolution of
the Yili Block and the implications for the evolution of the Rodinia
supercontinent.

2. Geological background

The CAOB is bounded by the Baltic Craton to the west, the Siberian
Craton to the north, and the combined Tarim–North China cratons to
the south (Fig. 1a). The region underwent a complex history spanning
the late Mesoproterozoic through late Paleozoic. There are several
microcontinents within the southwestern CAOB, including the Central
Tianshan Block, the Yili Block, and other Precambrian terranes in Ka-
zakhstan and Kyrgyzstan.

The Yili Block is the easternmost of these Precambrian micro-
continents and adjoins the Chu–Yili Block and several other
Precambrian blocks in Kazakhstan (Degtyarev et al., 2008; Tretyakov
et al., 2015). This block is bordered by the Nalati fault to the south and

the North Tianshan fault to the north (Fig. 1b). The Precambrian
crystalline and metamorphic basement of the Yili Block crops out along
its northern and southern margins (Fig. 1b) and comprises mainly latest
Mesoproterozoic to Neoproterozoic amphibolite, gneiss, migmatite,
mica schist, marble, and quartzite. The most typical (and studied)
basement rocks are those of the Wenquan complex in the northern Yili
Block, which includes gneissic granite and migmatite with ages of
987–845Ma (Hu et al., 2010; Wang et al., 2014a; Huang, 2017) in-
truded by ca 778–776Ma mafic dykes and associated granite veins
(Wang et al., 2014b). The oldest basement rocks exposed in the
southern Yili Block are the Meso–Neoproterozoic Tekesi, Kekesu, and
Kusitai groups. The Tekesi Group is composed of limestones and dolo-
mites interbedded with quartzites, phyllites, and quartz schists. The
Kekesu Group is characterized by thick-bedded grey limestones and
dolomites, whereas the Kusitai Group consists mainly of a basal con-
glomerate grading upward into thin-bedded mudstones and quartz
sandstones (XBGMR, 1993; Zhang et al., 2006). These basement units
are overlain by late Neoproterozoic to Quaternary sedimentary se-
quences (Liu et al., 2014) and are intruded by Phanerozoic intrusive
rocks with episodes of reworking during Paleozoic orogenesis (Alexeiev
et al., 2011; Cao et al., 2017; Huang et al., 2018).

3. Field geology and petrography

Neoproterozoic granites in the southern Yili Block crop out along
the Nalati fault near Tekesi City (Fig. 2). These granites intrude the
Mesoproterozoic Tekesi Group, which comprises mainly quartz-mica
schist, phyllite, quartzite, meta-sandstone, and marble. A series of NNE-
trending faults in the southern Yili Block are the major contact
boundaries between the Neoproterozoic granites and meta-sedimentary
rocks (Fig. 2).

Neoproterozoic augen and mylonitized granites crop out in the
western part of the study area (Fig. 2) and have sharp contact re-
lationships without any visible baking or quenching at their margins
(Fig. 3a–d). The augen granites are characterized by numerous micro-
cline phenocrysts with a matrix mineral assemblage of microcline
(30–35 vol%), perthite (20–25 vol%), oligoclase (5–10 vol%), quartz
(25–30 vol%), and biotite (∼5 vol%) (Fig. 3f). The mylonitized granites
have a fine-grained texture, consisting of microcline (30–35 vol%),
perthite (15–20 vol%), oligoclase (5–10 vol%), quartz (20–25 vol%),
muscovite (∼5 vol%), and biotite (∼5 vol%) (Fig. 3g). Some of the
augen and mylonitized granites have undergone later sericite altera-
tion. Porphyritic gneissic granites that crop out in the east of the study
area are medium to fine grained with phenocrysts of perthite and quartz
(Fig. 3e) and are moderately deformed and fractured. The porphyritic
gneissic granites comprise perthite (40–45 vol%), oligoclase (10–15 vol
%), quartz (25–30 vol%), and biotite (5–10 vol%) with accessory mi-
nerals of apatite, zircon, epidote, and opaque mineral oxides (Fig. 3h).

Representative samples were collected for elemental analyses
(Fig. 2), including three samples of augen granite (WG-1), mylonitized
granite (KB05), and porphyritic gneissic granite (KB13) for zircon
dating.

4. Analytical methods

4.1. LA–ICP–MS U–Pb dating of zircons

Zircons were separated using heavy-liquid and magnetic methods.
The separated crystals were photographed using an optical microscope,
and their internal structures were checked by cathodoluminescence
(CL) using an analytical scanning electron microscope (JSM–IT100)
connected to a GATAN MINICL system at the State Key Laboratory of
Geological Processes and Mineral Resource, China University of
Geosciences, Wuhan (GPMR-Wuhan). Imaging conditions included a
10.0–13.0 kV voltage for the electric field and 80–85 µA current for the
tungsten filament. The U–Pb isotopic analyses involved laser-

Fig. 4. Representative CL images of zircons from the studied granites in the
southern Yili Block. (a) Sample WG-1 from augen granite; (b) KB05 from my-
lonitized granite; (c) KB13 from gneissic granite. (Solid and dashed circles re-
present points analysed for U–Pb and Lu–Hf isotopes, respectively).
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ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS)
at the GPMR-Wuhan. A GeolasPro laser-ablation system with a
COMPexPro 102 ArF excimer 193 nm laser and a MicroLas optical
system were employed with an Agilent 7500a ICP–MS instrument.
Laser-ablation spot size, frequency, and energy were set to 32 µm, 6 Hz,
and ∼60mJ, respectively. Each analysis incorporated a background

acquisition of 20–30 s followed by 50 s of sample data acquisition.
Zircon 91,500 was used as the external standard for U–Pb dating and
was analysed twice for every six sample analyses, yielding a 206Pb/238U
age of 1062.9 ± 3.2Ma (2σ; N= 44; MSWD=0.04), identical to the
age of 1062.4 ± 0.4Ma recommended by Wiedenbeck et al. (1995).
Common Pb correction was not performed because of the low 204Pb

Fig. 5. Zircon U–Pb concordia diagrams for (a) augen granite (WG-1); (b) mylonitized granite (KB05); and (c) gneissic granite (KB13). Inserts are the histograms of
zircon age distributions.
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signal. Zircon standard GJ-1 was analysed as an unknown, yielding a
weighted mean 206Pb/238U age of 606.5 ± 5.9Ma (2σ, N=8,
MSWD=2.2), which is in good agreement with its recommended age
of 608.5 ± 0.4Ma (Jackson et al., 2004). Concordia diagrams were
prepared and weighted mean calculations performed using Isoplot/
Ex_ver3 (Ludwig, 2003). Instrument operating conditions were as de-
scribed by Liu et al. (2010).

4.2. Zircon Lu–Hf isotopic analyses

In situ zircon Lu–Hf isotopic analyses were performed on dated
grains using a Neptune Plus multicollector (MC)–ICP–MS (Thermo
Fisher Scientific, Germany) in combination with a Geolas 2005 excimer
ArF laser-ablation system (Lambda Physik, Göttingen, Germany) at the
GPMR-Wuhan. Analytical spots were close to, or on the top of, spots
used for U–Pb analysis, or at least in the same growth domain as

inferred from CL images. The laser beam diameter was 44 μm. Each
measurement included 20 s background acquisition followed by 50 s of
ablation-signal acquisition. Instrument operating conditions were as
described by Hu et al. (2012). Off-line selection and integration of
analytical signals were performed using ICPMSDataCal (Liu et al.,
2010). Zircon standards 91,500 and GJ-1 were used to check instru-
ment reliability and stability, yielding weighted mean 176Hf/177Hf ra-
tios of 0.282301 ± 0.000010 (2σ, N= 18) and 0.282007 ± 0.000026
(2σ, N=8), respectively, which are comparable with the recommended
values of 0.282308 ± 0.000003 (91500) and 0.282000 ± 0.000005
(GJ-1) (Morel et al., 2008).

4.3. Whole-rock major- and trace-element analyses

Whole-rock samples were crushed in a corundum jaw crusher to
60 mesh. About 60 g was powdered in an agate ring mill to< 200 mesh

Fig. 6. Variation diagrams for the studied granites of the southern Yili Block. (a) Total-alkali–silica (TAS) classification (Middlemost, 1994); (b) FeOT/
(FeOT+MgO)– SiO2 (Frost et al., 2001); (c) (Na2O+K2O− CaO)–SiO2 (Frost et al., 2001); (d) A/NK–A/CNK (Maniar and Piccoli, 1989); (e) P2O5–SiO2; and (f)
Th–Rb (Chappell and White, 1992).

Fig. 7. Chondrite-normalized REE patterns and primitive mantle-normalized trace-element spider diagrams for the studied granites of the southern Yili Block.
Normalizing values of chondrite and of primitive mantle are from Taylor and McLennan (1985) and Sun and McDonough (1989), respectively.

F. Xiong, et al. Precambrian Research 328 (2019) 235–249

240



for whole-rock geochemical analysis. Major-element analyses involved
standard X-ray fluorescence methods using a Shimadzu Sequential 1800
spectrometer at the GPMR-Wuhan. Precision was better than 4% and
accuracy better than 3% for major elements. Measurement procedure
and data quality were monitored by repeated analyses (one in eight
samples) of USGS standard AGV-2 and Chinese National Standards GSR-
1 and GRS-7. Analytical techniques were as described by Ma et al.
(2012).

Trace-elements were analysed using an Agilent 7500a ICP–MS at the
GPMR-Wuhan. Samples were digested in HF+HNO3 in Teflon bombs.
Analyses of USGS standards AGV-2, BHVO-2, BCR-2, and RGM-2 in-
dicate accuracies better than 5%–10% for most trace elements. Sample
digestion and ICP–MS instrumental procedures were as described by Liu
et al. (2008).

4.4. Whole-rock Sr–Nd isotopic analyses

Sr–Nd isotopic compositions were determined at the GPMR-Wuhan.
Sample powders were spiked with mixed isotope tracers, dissolved in
HF+HNO3 in Teflon capsules, and Sr–Nd separated by conventional

cation-exchange techniques. Isotopic measurements were performed
using a Finnigan MAT-261 thermal-ionization mass spectrometer.
Procedural blanks were< 200 pg for Sm and Nd and<500 pg for Rb
and Sr. Mass fractionation corrections for Sr and Nd isotopic ratios were
based on 86Sr/88Sr= 0.1194 and 146Nd/144Nd=0.7219, respectively.
The NBS987 standard measured during the course of the analyses gave
a mean 87Sr/86Sr ratio of 0.710246 ± 0.000004 (2σ, N=7), and the
Jndi-1 standard gave a mean 143Nd/144Nd ratio of
0.512117 ± 0.000003 (2σ, N= 9), which are identical to their re-
commended values of 0.710241 ± 0.000012 (Thirlwall, 1991) and
0.512115 ± 0.000007 (Tanaka et al., 2000), respectively. Analytical
methods, precision, and accuracy are as described by Gao et al. (2004).

5. Results

5.1. Zircon U–Pb geochronology

LA–ICP–MS zircon U–Pb data are given in Supplementary Table S1
and representative zircon CL images with analysis spots are shown in
Fig. 4. Although 30 spots were analysed per sample, only those with

Fig. 8. εNd(t)–Age plots for zircons from Precambrian igneous rocks of this study, from the Yili Block, Central Tianshan Block, and northern Tarim Craton (data from
this study; Wang et al. (1991, 2014b,c, 2017); Chen et al. (1999, 2017); Hu et al. (2000, 2010); Zhang et al. (2007b, 2009, 2011, 2012c); Cao et al. (2011); Lei et al.
(2013); Ye et al. (2013, 2016); Wu et al. (2014); Cai et al. (2018)).

Fig. 9. εHf(t)–Age plots for zircons from Precambrian rocks of the Yili Block, the Central Tianshan Block, and the northern Tarim Craton (data from this study; He
et al. (2013, 2015a,b, 2018a); Lei et al. (2013); Ye et al. (2013, 2016); Zong et al. (2013); Ge et al. (2014a, b); Huang et al. (2014, 2015a,b, 2016, 2017); Wang et al.
(2014c,d, 2017); Wu et al. (2014, 2018); Gao et al. (2015); Kovach et al. (2016); Chen et al. (2017); Cai et al. (2018)).
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≥95% concordance were used for interpretation.
Zircons from the augen (sample WG-1) and mylonitized granite

(sample KB05) display similar textures and compositions. They are
colourless, transparent, or translucent grains. Their lengths are mostly
in the range 100–200 μm with aspect ratios of 1:1–3:1. Most grains are
euhedral doubly-terminated prismatic crystals with a zoning structure
indicative of magmatic origin (Group 1); whereas a few grains are un-
zoned and dark or exhibit a residual core with corroded margin or
zoned rim (Group 2) (Fig. 4a and b). Ten spots in Group 1 of sample
WG-1 have concordant 206Pb/238U ages of 894–883Ma (Fig. 5a) with
high Th/U ratios (0.21–1.13) and clear oscillatory zoning, confirming
their magmatic origin (Hoskin and Schaltegger, 2003). The weighted
mean age of 889 ± 2Ma (MSWD=0.25, N=10; Fig. 5b) of these 10
spots is therefore interpreted as the crystallization age of the augen
granite. Nine analysed spots from Group 2 (sample WG-1) have con-
cordant 206Pb/207Pb ages of 1261–991Ma (Fig. 5a).

All of the analysed zircons from the mylonitized granite (sample
KB05) have high and varied Th (144–982 ppm) and U (277–3352 ppm)
contents and high Th/U ratios (0.15–0.89). Group 1 zircons of sample
KB05 have concordant 206Pb/238U ages of 897–884Ma with a weighted
mean age of 892 ± 5Ma (MSWD=0.26, N=11) (Fig. 5c and d;
Supplementary Table S1). Group 2 zircons (KB05) have concordant
ages of 1192–979Ma (Fig. 5c and d).

Zircons from the gneissic granite (sample KB13) are 100–200 µm in
length with aspect ratios of 0.25–1.0. Most grains are euhedral crystals
with oscillatory or broad zoning, and a few have inherited cores
(Fig. 4c). Most analysed spots have concordant 206Pb/238U ages of
953–937Ma (Supplementary Table S1) with a weighted mean age of
947 ± 4Ma (MSWD=0.29, N=21; Fig. 5e and f), interpreted as
being the crystallization age of this gneissic granite. Seven analysed
spots from the inherited cores have concordant 206Pb/207Pb ages of
1502–1039Ma, implying the occurrence of a previous thermal event.

5.2. Whole-rock geochemistry

Results of bulk-rock major- and trace-element analysis results are
given in Supplementary Table S2. All the granites have high SiO2

(72.1–76.6 wt%) and (K2O+Na2O) (7.3–8.4 wt%) contents and high
A/CNK ratios (1.03–1.09; modal Al2O3/(CaO+Na2O+K2O)), in-
dicating a calc-alkaline, weakly peraluminous affinity (Fig. 6a–d). The
gneissic granites have low FeOT/MgO ratios (3.49–3.59) and high Mg#

values (33–34; modal 100*Mg/(Mg+ Fe)), and therefore resemble
magnesian granites (Frost and Frost, 2011). The augen- and myloni-
tized granites have contrasting FeOT/MgO ratios (6.52–14.58) and Mg#

values (11–21) to those of the gneissic granites, defining a ferroan
granite trend (Fig. 6b).

In chondrite-normalized rare earth elements (REEs) diagrams
(Fig. 7a), the gneissic granites exhibit enrichment in light REEs (LREEs)
with (La/Yb)N ratios of 7.21–7.70, strong negative Eu anomalies
(δEu=0.37–0.47), and significant differentiation of LREEs ((La/
Sm)N=3.96–4.06). The mylonitized granites have REEs patterns si-
milar to those of the gneissic granites with ratios (La/
Yb)N=6.86–10.01, (La/Sm)N=3.84–4.73, and δEu=0.20–0.25. In
contrast, the augen granites display flat REEs patterns with low (La/
Yb)N (1.32–1.92) and (La/Sm)N (1.66–1.89) ratios (Fig. 7a). All of the
granites are characterized by depletion of Nb, Ta, Ba, Sr, P, Eu, and Ti,
strong enrichment in large-ion lithophile elements (LILEs), and highly
differentiated high field strength elements (HFSEs) in their primitive
mantle-normalized trace element patterns (Fig. 7b).

5.3. Sr–Nd–Hf isotopes

Whole-rock Sr and Nd isotopic compositions are presented in
Supplementary Table S3. Initial Sr and Nd isotopic ratios and εNd(t)
values of these granites were calculated using their crystallization ages.
The studied granites all show identical Nd isotopic compositions char-
acterized by relatively low initial 143Nd/144Nd ratios of
0.511190–0.511275 and εNd(t) values of −5.44 to −3.75. The augen

Fig. 10. (a–e) Chemical classification diagrams (after Whalen et al., 1987) in which the augen and mylonitized granites plot in the field of highly fractionated A-type
granites; (f) Major-element classification diagram (after Sylvester, 1989) showing the fields of alkaline, calc-alkaline, and highly fractionated calc-alkaline rocks. The
fields of A-type and highly fractionated granites in (d) are from Wu et al. (2017); the fields of peraluminous A-type granites are from the following sources: Sierras
Pampeanas (Morales Cámera et al., 2017); Lachlan Fold Belt (Whalen et al., 1987).
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and mylonitized granites display a wide variation in initial 87Sr/86Sr
ratios (0.703921–0.745403), whereas the gneissic granites have a re-
latively narrow range (0.718526–0.723162). As the Nd–Hf isotopic
compositions (presented below) are relatively uniform, the abnormally
high and low initial 87Sr/86Sr ratios of the augen and mylonitized
granites (0.743550–0.745403 and 0.703921, respectively) may reflect
the influence of low grades of deformation and metamorphism
(Barovich and Patchett, 1992; Ma and Liu, 2001). These data were
therefore excluded from the discussion of petrogenesis. All of the
granites have similar Nd model ages (T2DM) of 1.96–1.88 Ga, similar to
the age of basement rocks in the Tianshan Block (Fig. 8; Hu et al., 2000;
Kröner et al., 2017; Wang et al., 2017).

In situ zircon Lu–Hf isotopic data are given in Supplementary
Table S4. Zircons from the augen granites (sample WG-1), with a
206Pb/238U age of 889Ma, display a uniform isotopic composition with
εHf(t) values of− 2.11 to− 0.76. The ca. 892Ma zircons from the
mylonitized granites (sample KB05) have slightly higher εHf(t) values
of−0.26 to 0.72. Old inherited zircons from the augen and mylonitized
granites have positive εHf(t) values of 3.16–4.09 and 0.70–5.90, re-
spectively (Fig. 9a). Nonetheless, the magmatic and inherited zircons
from the two granites have similar two-stage Hf model ages of
1.91–1.60 Ga. In contrast, the gneissic granites (sample KB13) have
much lower initial 176Hf/177Hf ratios (0.282005–0.282158) and εHf(t)
values (−6.95 to− 1.67) as well as older Hf model ages (2.26–1.93 Ga)
(Fig. 9b). However, two analyses of inherited zircon cores (ca. 1502Ma
and 1125Ma) from sample KB13 yielded varied Hf isotopic composi-
tions with εHf(t) values of +7.74 and −3.19 and two-stage Hf model

ages of 1.76 and 2.17 Ga.

6. Discussion

6.1. Petrogenesis of the two granite groups of the Yili Block

Zircon U–Pb dating reveals two periods of Neoproterozoic granitic
magmatism in the southern Yili Block, represented by the ca. 947Ma
gneissic granite in the eastern part of the study area and the ca. 890Ma
augen and mylonitized granites in the western part. The gneissic
granites are magnesian with higher Mg# values (33–34) than those of
the augen and mylonitized granites (Mg#=11–21) and belong to the
ferroan granite series (Fig. 6b). This contrast indicates different po-
tential source regions and/or petrogenetic processes. The absence of Al-
rich minerals, low A/CNK ratios (< 1.1), negative correlation between
P2O5 and SiO2, and positive correlation between Th and Rb preclude
the gneissic granites from being S-type granites (Figs. 3 and 6; Chappell
and White, 1992; Chappell, 1999). Furthermore, the gneissic granites
have low Ga/Al and FeOT/MgO ratios and high MgO, FeOT, and TiO2

contents, and therefore resemble calc-alkaline, weakly peraluminous I-
type granites (Whalen et al., 1987; Fig. 10). In contrast, the augen and
mylonitized granites have high SiO2 (> 74wt%) and alkali
(Na2O+K2O=7.70–8.39 wt%) contents, high FeOT/MgO and
10000*Ga/Al (> 2.8) ratios, and low CaO, Al2O3, Ba, and Sr contents,
indicating a similarity to highly fractionated calc-alkaline A-type
granites (Whalen et al., 1987; Frost and Frost, 2011; Wu et al., 2017;
Fig. 10).

Fig. 11. Chemical compositions of the studied granites of the southern Yili Block. Outlined fields denote compositions of partial melts obtained in experimental
studies by dehydration melting of various bulk compositions. The curves of mantle AFC and crustal AFC are after Stern and Kilian (1996). (Data sources: Vielzeuf and
Holloway, 1988; Patiño Douce and Johnston, 1991; Rapp and Watson, 1995; Patiño Douce and Beard, 1996).
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Compared with results of experimental petrological studies
(Fig. 11), all the samples have high SiO2 contents, high K2O/Na2O and
Al2O3/(MgO+FeOT) ratios, moderate CaO/(MgO+FeOT) and
(Na2O+K2O)/(MgO+FeOT+TiO2) ratios, relatively low Mg# and
(MgO+FeOT+TiO2) values, low εNd(t) values (−5.44 to −3.75),
and high initial 87Sr/86Sr ratios (0.716530–0.720543 and
0.718526–0.723162 for ca. 890Ma and ca. 947Ma granites, respec-
tively). These geochemical characteristics suggest a derivation from the
partial melting of crustal metagreywackes (Patiño Douce and Johnston,
1991; Patiño Douce and Beard, 1996). The following observations in-
dicate that there is no unequivocal evidence for a contribution of
mantle materials: (1) an addition of mafic components would produce
rocks with moderate SiO2 contents (Stern and Kilian, 1996); (2) the
mantle has high Zr/Hf (34–42) and Nb/Ta (14.2–15.9) ratios (Sun and
McDonough, 1989; Green, 1995), and an addition of mantle materials
would enhance those ratios, which is not the case for the studied
granites; and (3) there is no diorite–granodiorite–granite association in
the studied area, which is inconsistent with a magma mixing and/or
fractional crystallization model.

Notably, the gneissic granites have older model ages (ca. 2.0 Ga)
and much higher Mg# values than those of the augen and mylonitized
granites at the same SiO2 contents, which indicates that the source of
the gneissic granites was relatively enriched in MgO. In contrast, the
chondrite-like εHf(t) values (−2.11 to 0.72) and relatively young Hf
model ages of the ca. 890Ma augen and mylonitized granites suggest
their derivation from ca. 1.8 Ga metagreywackes with a weak juvenile
crust signature. This conclusion is consistent with results of studies of

Precambrian basement rocks of the Yili Block (e.g., Wenquan complex
and Kailaketi Group), in which the amphibolites and meta-sedimentary
rocks display an obvious age peak at ca. 1.8–1.7 Ga with high positive
εNd(t) and εHf(t) values (Figs. 8a and 9a), thereby indicating the pre-
sence of late Paleoproterozoic juvenile crustal materials (Hu et al.,
2000; He et al., 2015a; Huang et al., 2016). In addition, the occurrence
of small amounts of inherited zircons (1502–979Ma; Fig. 5;
Supplementary Table S1) indicates a minor contribution of Mesopro-
terozoic rocks to the petrogenesis of the studied granites.

Furthermore, the contrast in REE distribution patterns between the
augen ((La/Yb)N=1.24–1.81) and mylonitized granites ((La/
Yb)N=6.46–9.43) indicates that fractionation also played an im-
portant role in producing their chemical variations. This is further
confirmed by their marked negative Eu, Ba, Sr, Na, Ta, P, and Ti
anomalies (Fig. 7). Through geochemical modelling (Ersoy and HelvacI,
2010), the main fractionating phases of K-feldspar, plagioclase, and
biotite may be included in our samples, as indicated by the positive
Ba–Sr and δEu–Sr correlations (Fig. 12a and b). As shown in Fig. 12, the
negative Na, Ta, P and Ti, anomalies can be interpreted as reflecting
fractionation of ilmenite, allanite, and possibly apatite, with such
fractionation also being consistent with their petrographic features
(Fig. 3).

6.2. Implications for the early Neoproterozoic tectonic evolution of the Yili
Block

The magma sources and processes involved in the generation of

Fig. 12. Diagrams of fractional crystallization simulation (Ersoy and HelvacI, 2010). (a) Ba–Sr; (b) δEu–Sr; (c) Ta/Nb–Ta; (d) (La/Yb)N–La. Pl= plagioclase; Kfs=K-
feldspar; B=biotite; Amp= amphibole; Ap= apatite; Alln= allanite; Ilm= ilmenite; Tit= titanite; Zr= zircon.
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granites, as reflected by their geochemical signatures, show a sig-
nificant correlation with tectonic settings (Pearce, 1996). The bulk-rock
major- and trace-element compositions of the ca. 947Ma gneissic
granites of the Yili Block resemble those of syn-collisional granites
(Fig. 13), whereas the ca. 890Ma granites display geochemical affi-
nities similar to those of extension-related granites. The ca. 890Ma
granites have high Y/Nb and Yb/Ta ratios (Fig. 13c and d) similar to
those of A2-type granites (Eby, 1992), indicating that their petrogenesis
is related to post-collisional extension, as for many highly fractionated
granitoids.

The ages and tectonic interpretations for the analysed samples are in
accordance with data from regional magmatism and metamorphism in
the Yili Block and adjacent blocks within the CAOB. These blocks are
characterized by large-scale linearly distributed ca. 1000–890Ma I- and
S-type granitoids (Figs. 1b, 14, and 15). Such trends resemble those
convergent, continental margin accretionary orogens and may therefore
have been related to the assembly of Rodinia. Some I-type granitoids
within these CAOB blocks display high-K calc-alkaline and arc-related
geochemical characteristics with enrichment in LREEs and LILEs and
depletion of HREEs and HFSEs as observed, for example, in
945 ± 22Ma biotite granites in Aktau–Yili (Tretyakov et al., 2015),
969 ± 11Ma granitic gneisses in Chinese Central Tianshan (Yang
et al., 2008), and 1045 ± 7Ma granites in the southern part of Ka-
zakhstan North Tianshan (Kröner et al., 2013). This further confirms
the presence of latest Mesoproterozoic to earliest Neoproterozoic sub-
duction-related magmatism in these blocks, which were assembled

within the current southwestern CAOB. Furthermore, as shown in
Fig. 5, inherited zircons from the studied granites also record a latest
Mesoproterozoic to earliest Neoproterozoic tectono-magmatic event,
with an age peak of ca. 985Ma recorded in sample KB05. Subsequent
tectono-magmatic activities, including anatexis-related migmatization
(926–909Ma) of basement rocks (i.e., Wenquan Group), S-type granitic
magmatism (919–909Ma), mylonitization (ca. 919Ma), and greens-
chist- to amphibolite-facies metamorphism of early Neoproterozoic
gneisses, are recognized in the northern Yili Block (Hu et al., 2010;
Wang et al., 2014a; Huang, 2017). Such tectonic features are commonly
linked to collisional orogenesis (e.g., Brown, 2007; Liou et al., 2009),
thus indicating that the Yili Block occupied a syn-collisional setting
during ca. 950–900Ma. The 947–890Ma granitoids of the Yili Block are
mainly I- and S-type, whereas the 890–800Ma granitoids are mainly A-
type (Fig. 15). This shift in characteristics (Supplementary Table S5)
likely reflects a tectonic transition from syn-collisional to post-colli-
sional extension associated with Neoproterozoic orogenesis in this re-
gion of the CAOB.

Large-scale I- and S-type granitic magmatism in the Yili and ad-
jacent Central Tianshan blocks were synchronous at 960–900Ma
(Fig. 14), indicating a similar history during the early Neoproterozoic.
The termination of these igneous activities corresponds to ca. 900Ma
peak high-grade metamorphism in the southwestern CAOB (Wang
et al., 2014a; Huang, 2017; Zong et al., 2017). This tectonic transition
has also been recorded in Meso–Neoproterozoic strata (i.e., the Tekesi
and Kusitai groups) in the southern Yili Block. The Tekesi Group marine

Fig. 13. Trace- and major-element discrimination diagrams for the tectonic setting of the studied granites. (a) Nb–Y (Pearce et al., 1984); (b) R1–R2 diagram of
Batchelor and Bowden (1985): (1) mantle fractionates, (2) pre-plate collision, (3) post-collision, (4) late orogenic, (5) anorogenic, (6) syn-collision, and (7) post-
orogenic; (c, d) Chemical subdivision of A-type granites (Eby, 1992), (A1) truly anorogenic rifting; (A2) post-collisional.
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sedimentary sequence is unconformably covered by the Kusitai Group
and later Neoproterozoic sedimentary cover comprising mainly terres-
trial clastic rocks and interlayered glacial deposits (XBGMR, 1993;
Zhang et al., 2006; Ding et al., 2009). Our recent research revealed that
the Tekesi Group was deposited during the latest Mesoproterozoic to
earliest Neoproterozoic (1040–960Ma) and that the Kusitai Group ac-
cumulated during the early Neoproterozoic (< 926Ma) (Huang et al.,
2019). The regional stratigraphic unconformity and contrasting rock
assemblages between these units may reflect the suggested tectonic
transition.

After the transition from a syn-collisional to a post-collisional set-
ting, the Yili Block and nearby blocks within the CAOB evolved to a
post-orogenic extension regime. A later stage of continental rifting in
the southwestern CAOB may have occurred as early as ca. 830Ma, as
documented by mafic dyke swarms, composite volcanic flows, and bi-
modal intrusions (Zhang et al., 2007a, 2012b; Lu et al., 2008; Chen
et al., 2017). These indications of rifting may mark the onset of the
separation of the southwestern CAOB during the break-up of the Ro-
dinia supercontinent (Li et al., 2008; Cawood et al., 2018).

6.3. Crustal reworking and tectonic affinity of the Yili Block during the
Neoproterozoic

The studied Neoproterozoic granites have enriched Nd–Hf isotopic

compositions, characterized by negative εNd(t) values (−3.75 to
−4.45 for the ca. 947Ma gneissic granites; −4.14 to −5.44 for the ca.
890Ma augen and mylonitized granites) and negative or chondrite-like
εHf(t) values (−6.95 to −1.67 for ca. 947Ma gneissic granites; −2.11
to 0.72 for ca. 890Ma granites). Nd–Hf crustal model ages vary within a
narrow range with peaks at 2.0 Ga for the ca. 947Ma gneissic granites,
and 1.8 Ga for the ca. 890Ma granites. The Nd–Hf model ages (Figs. 8a
and 9a) recorded here and in other studies of the sedimentary prove-
nance of Paleoproterozoic detrital zircons (e.g., Liu et al., 2014; Huang
et al., 2016; Huang, 2017) reveal that the Yili Block may have a Pa-
leoproterozoic basement. The studied granites have marked negative
whole-rock εNd(t) and zircon εHf(t) values (Figs. 8 and 9), indicating
that reworking of old continental crust was the major mechanism for
the Neoproterozoic crustal evolution of the Yili Block.

Inherited zircons (1502–979Ma) in the studied granites have high
positive εHf(t) values (0.70–7.74; Fig. 9a; Supplementary Table S4),
barring spot KB13-11 with an age of 1125Ma and εHf(t) value
of− 3.19. Most inherited zircons are euhedral with high Th/U ratios of
0.14–1.16, with some grains displaying bright cores with oscillatory
zoning surrounded by dark overgrown rims (Fig. 4), indicating mag-
matic origins. These features, together with results of studies of Meso-
proterozoic detrital zircons in the Yili Block (Fig. 9a), suggest that
Mesoproterozoic crustal growth events in the Yili Block correspond to
1450–1400Ma and 1150–1050Ma magmatic events that occurred in
the southern CAOB (e.g., Kröner et al., 2013; He et al., 2018a).

Nd–Hf isotopic compositions of the igneous rocks follow an en-
riched trend during the period 1000–890Ma (Figs. 8 and 9), suggesting
that crustal reworking played a major role in the evolution of the Yili
Block. However, there were multiple crustal growth events after ca.
890Ma, with the earliest pulse from ca. 830 to 800Ma being followed
by those at ca. 780–720Ma and 650–630Ma. These events echo the
episodic rifting activity related to the break-up of the Rodinia super-
continent (Zhang et al., 2012b; Han et al., 2018). The evolution from
crustal reworking to multiple pulses of juvenile crustal growth is also
recorded in Neoproterozoic meta-sedimentary rocks from the Yili Block,
in which detrital zircons with ages of 1000–890Ma display enriched
Lu–Hf isotopic compositions, but those with ages< 800Ma are mostly
isotopically depleted. This Lu–Hf isotopic feature is consistent with the
Nd isotopic trend of Neoproterozoic igneous rocks in the Yili Block
(Fig. 8) and likely reflects a change in the process of crustal evolution.

The Nd–Hf isotopic compositions of the studied granites as well as
their inherited zircons indicate that the Yili Block has a basement his-
tory and tectonic evolution similar to that of the Central Tianshan
Block, in which the 2.2–1.8 Ga Paleoproterozoic basement also under-
went juvenile crustal growth during the Mesoproterozoic (Figs. 8 and
9). The tectonic affinities of early Neoproterozoic magmatism in the Yili
and adjacent blocks in the southwestern CAOB suggest that they were at
or near an active continental margin during the assembly of Rodinia.
The situation may have been similar to the Cenozoic orogens of the
Tethyan margin of Tibet and to the Andes margin of South America.

In contrast, the Tarim Craton has an Archean basement and lacks
evidence for orogeny-related magmatism during 1.0–0.9 Ga and sub-
sequent high-grade metamorphism (ca. 900Ma) (e.g., Cai et al., 2018;
Yang et al., 2018). These differences in basement age and latest Me-
soproterozoic–early Neoproterozoic magmatism preclude the possibi-
lity that the Yili Block was part of the Tarim Craton during much of the
Proterozoic. Furthermore, the absence of Neoarchean to early Paleo-
proterozoic magmatism in the Yili Block, in contrast to their occurrence
in the Tarim Craton (Figs. 8 and 9), suggests that these two blocks,
which are now adjacent, had independent and spatially unrelated his-
tories from the Archean through to the early Neoproterozoic. After ca.
890Ma, the Tarim Craton had a similar magmatic record to that of the
Yili and Precambrian blocks in the southwestern CAOB, characterized
by I- and A-type but no S-type granitoids, as well as coeval< 830Ma
rifting-related magmatic rocks (such as mafic dyke swarms, mafic and
alkaline complexes, and bimodal igneous rocks) (Zhang et al., 2007a,

Fig. 14. Zircon U–Pb age frequency distributions for Neoproterozoic igneous
rocks of the Yili Block, Central Tianshan Block, and Tarim Craton (data sources:
Supplementary Table S5).
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2012b, 2013; Lu et al., 2008; Ye et al., 2013; Wang et al., 2014b; Chen
et al., 2017). These features indicate that all of these Precambrian
blocks were likely spatially associated by ca. 830Ma during the break-
up of the margin of the Rodinia supercontinent.

In summary, the Yili Block has a geological history similar to that of
the Central Tianshan Block but differed from that of the Tarim Craton
until the final assembly of the Rodinia supercontinent. During the early
Neoproterozoic (1000–890Ma), the Yili Block and Central Tianshan
Block represented an Andean-type orogen with the generation of nu-
merous I- and S-type granitoids, in which the reworking of ancient
continental crust played a major role in their crustal evolution. In
contrast, coeval magmatic records are rare in the Tarim Craton. By the
middle Neoproterozoic (not later than 830Ma), rifting-related mag-
matism may have marked the end of the early Neoproterozoic orogeny
and the beginning of intra-plate tectonic systems.

7. Conclusions

Several conclusions can be drawn from this study of the petro-
graphy, geochemistry, and geochronology of Neoproterozoic granitic
plutons in the southern Yili Block and from the synthesis of other stu-
dies of Precambrian blocks in the southwestern CAOB, as follows.

(1) I-type granites dated at ca. 947Ma and highly fractionated A-type
granites dated at ca. 892–889Ma occur in the southern Yili Block
and were derived from the partial melting of ca. 2.0 Ga MgO-rich
basement rocks and from a ca. 1.8 Ga crustal source, respectively.
This suggests that crustal reworking played a major role in the early
Neoproterozoic crustal evolution of the Yili Block.

(2) The Yili Block experienced a tectonic transition from syn-collisional
to post-collisional extension at ca. 890Ma, after which the tectonic
setting evolved gradually to orogenic intra-plate rifting during the
late Tonian.

(3) The Yili Block shares a similar tectonic affinity and evolutionary
history to that of the Central Tianshan Block but different from that
of the Tarim Craton. The Yili and Central Tianshan blocks were
probably part of an early Neoproterozoic orogenic system that de-
veloped along the exterior margin of the Rodinia supercontinent.
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