Empirical model for predicting the occurrence of major geomagnetic storms during SC23

M. Mierla ${ }^{1,2,3}$, C. Oprea ${ }^{2}$, N. Srivastava ${ }^{4}$, L. Rodriguez ${ }^{1}$, D.BesliuIonescu 2, O. Stere ${ }^{2}$, G. Maris Muntean ${ }^{2}$

1. STCE - Royal Observatory of Belgium, Brussels, Belgium
2. Institute of Geodynamics of the Romanian Academy, Bucharest, Romania
3. Research Center for Atomic Physics and Astrophysics, University of Bucharest, Romania
4. Udaipur Solar Observatory, Physical Research Laboratory, Udaipur, India

Contents

Aim of the study
Data
The model
Analysis
Results
Conclusions

Aim of the Study

Definition

CMEs are ejections of parts of the magnetized solar atmosphere that occur over the course of hours to days.

Do they influence us? - Yes
When directed towards the Earth they can create major disturbances in the magnetosphere.

During SC23 there were 25 major geomagnetic storms (Dst <-150 nT) for which clear CMEs could be associated. Applying a logistic regression model on these events we try to forecast the occurrence of major storms.

Data

- 25 CMEs during SC 23 which have produced major geomagnetic storm (Dst <-150 nT)

Oprea et al., submitted to AnnGeoph.

CME on 2-May-1998

GOES X-Rays: 1998/05/02 14:06

Source location: AR 8210

- S15W15
- AR type: $\gamma \delta$

Speeds (km/s):

- Vproj $=697$
- $\operatorname{Vrad}=1543$
- $\mathrm{Vtt}=700$

ICME on 4-May-1998

Analysis - Source location and flare importance

Flare importance versus Dst index

Latitude vs longitude for CMEs sources

Analysis - Speeds

CME projected speed measured in LASCO versus ICME maximum speed measured at ACE

CME de-projected speed versus ICME maximum speed.

Analysis - Travel time

The model (1)

Statistical model for predicting the geomagnetic storms (Srivastava 2005):

$$
G M S=\left[f\left(S P_{i}\right), P_{k}\right]
$$

- $G M S=$ the occurrence of a geomagnetic storm,
- $S P_{i}(\mathrm{i}=\mathrm{I})$ is the $\mathrm{i}^{\text {th }}$ solar variable,
- $P_{k}(\mathrm{k}=\mathrm{K})$ is the $\mathrm{k}^{\text {th }}$ parameter of the function f that relates the solar variables to the occurrence of a geomagnetic storm,
- I and K are the total numbers of solar variables and function parameters.

Logistic regression model: for modeling the relation in the above equation, in order to predict the occurrence of a major geomagnetic storm.

Estimate the probability of the occurrence of a major geomagnetic storm given the incidences of the solar variables.

The model (2)

Estimate the probability of the occurrence of a major geomagnetic storm given the incidences of the solar variables.

$$
\Pi_{i}=1 /\left(1+e^{-z_{i}}\right)
$$

$$
Z_{i}=b_{0}+b_{1} x_{i 1}+b_{2} x_{i 2}+b_{3} x_{i 3}+\ldots .+b_{j} x_{i j}
$$

$\Pi_{i}=$ the probability of the occurrence of major geomagnetic storm given the $i^{\text {th }}$ observation of the solar variable $\boldsymbol{b}_{\boldsymbol{j}}(\boldsymbol{j}=\mathbf{0}$ to $\boldsymbol{J})=$ model parameters (regression coefficients) $\mathbf{x}_{\mathrm{ij}}(\boldsymbol{i}=\mathbf{0}$ to $\boldsymbol{I} ; \boldsymbol{j}=\mathbf{0}$ to $\boldsymbol{J})=$ independent variables
\boldsymbol{I} and $\boldsymbol{J}=$ total number of observations

Application of the model to the data

(a) Solar Parameters: Inputs to the logistic regression model
1.Flare X-class classification:

C - class flare code 0.1
M - class flare code 1.0
X - class flare code 10.0
Flare Impact parameter $=$ Flare-class \cdot flare duration (min)
2. Source Location:
(a) Latitude: North (+), South (-)
(b)Longitude: East $(+)$, West (-)
3. Neutral line orientation: . the angle is measured from North anticlockwise.
4. Initial speed of CME:

Either projected Speed $\left(\mathrm{V}_{\mathrm{proj}}\right)$; Radial Speed $\left(\mathrm{V}_{\mathrm{rad}}\right)$ or True speed $\left(\mathrm{V}_{\mathrm{tt}}\right)$

Application of the model to the data

Model Equation

$$
\Pi_{i}=1 /\left(1+e^{-z_{i}}\right)
$$

$\mathrm{Z}_{\mathrm{i}}=-10.06+7.25 \cdot 10^{-03} * \mathrm{~V}_{\mathrm{CME}}+0.23 \cdot$ Lat $+3.93 \cdot 10^{-02} \cdot$ Lon $4.03 \cdot 10^{-02} \cdot(\mathrm{NL}$ orientation $)+4.88 \cdot 10^{-03} \cdot($ Flare impact param $)$

$$
\begin{aligned}
& \prod_{i}=\operatorname{Pred}(\mathrm{Dst}) \\
& \mathrm{V}_{\mathrm{CME}}=\mathrm{CME} \text { speed }
\end{aligned}
$$

Results

dst / Standardized coefficients

(95\% conf. interval)

Standardized coefficients are used to compare the relative weights of the variables. The higher the absolute value of a coefficient, the more important the weight of the corresponding variable.

Prediction

Data Sets Observed Predicted $\stackrel{0}{\text { Ppeçractect }}$

Intense Storms
14
13
92.86\%
Major Storms
10
90.91\%

Conclusions

(1) Prediction is better with initial speeds input taken as Vproj compared with Vtt and Vrad.
(2) The most significant solar input parameter to the model (amongst the chosen parameters/variables) is Duration times X-ray class
(3) This is followed by projected speeds of CMEs, latitude, longitude of the source regions of CMEs.
(4) The neutral-line orientation has hardly any influence on strength of strong storms.

